Given an integer array nums
, return the largest perimeter of a triangle with a non-zero area, formed from three of these lengths. If it is impossible to form any triangle of a non-zero area, return 0
.
Example 1:
Input: nums = [2,1,2] Output: 5 Explanation: You can form a triangle with three side lengths: 1, 2, and 2.
Example 2:
Input: nums = [1,2,1,10] Output: 0 Explanation: You cannot use the side lengths 1, 1, and 2 to form a triangle. You cannot use the side lengths 1, 1, and 10 to form a triangle. You cannot use the side lengths 1, 2, and 10 to form a triangle. As we cannot use any three side lengths to form a triangle of non-zero area, we return 0.
Constraints:
3 <= nums.length <= 104
1 <= nums[i] <= 106
class Solution:
def largestPerimeter(self, nums: List[int]) -> int:
nums.sort()
for i in range(len(nums) - 1, 1, -1):
if (c := nums[i - 1] + nums[i - 2]) > nums[i]:
return c + nums[i]
return 0
class Solution {
public int largestPerimeter(int[] nums) {
Arrays.sort(nums);
for (int i = nums.length - 1; i >= 2; --i) {
int c = nums[i - 1] + nums[i - 2];
if (c > nums[i]) {
return c + nums[i];
}
}
return 0;
}
}
class Solution {
public:
int largestPerimeter(vector<int>& nums) {
sort(nums.begin(), nums.end());
for (int i = nums.size() - 1; i >= 2; --i) {
int c = nums[i - 1] + nums[i - 2];
if (c > nums[i]) return c + nums[i];
}
return 0;
}
};
func largestPerimeter(nums []int) int {
sort.Ints(nums)
for i := len(nums) - 1; i >= 2; i-- {
c := nums[i-1] + nums[i-2]
if c > nums[i] {
return c + nums[i]
}
}
return 0
}
function largestPerimeter(nums: number[]): number {
const n = nums.length;
nums.sort((a, b) => b - a);
for (let i = 2; i < n; i++) {
const [a, b, c] = [nums[i - 2], nums[i - 1], nums[i]];
if (a < b + c) {
return a + b + c;
}
}
return 0;
}
impl Solution {
pub fn largest_perimeter(mut nums: Vec<i32>) -> i32 {
let n = nums.len();
nums.sort_unstable_by(|a, b| b.cmp(&a));
for i in 2..n {
let (a, b, c) = (nums[i - 2], nums[i - 1], nums[i]);
if a < b + c {
return a + b + c;
}
}
0
}
}
int cmp(const void* a, const void* b) {
return *(int*) b - *(int*) a;
}
int largestPerimeter(int* nums, int numsSize) {
qsort(nums, numsSize, sizeof(int), cmp);
for (int i = 2; i < numsSize; i++) {
if (nums[i - 2] < nums[i - 1] + nums[i]) {
return nums[i - 2] + nums[i - 1] + nums[i];
}
}
return 0;
}