请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。
举个例子,如上图所示,给定一棵叶值序列为 (6, 7, 4, 9, 8)
的树。
如果有两棵二叉树的叶值序列是相同,那么我们就认为它们是 叶相似 的。
如果给定的两个根结点分别为 root1
和 root2
的树是叶相似的,则返回 true
;否则返回 false
。
示例 1:
输入:root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8] 输出:true
示例 2:
输入:root1 = [1,2,3], root2 = [1,3,2] 输出:false
提示:
- 给定的两棵树结点数在
[1, 200]
范围内 - 给定的两棵树上的值在
[0, 200]
范围内
后序遍历。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
def dfs(root):
if root is None:
return []
ans = dfs(root.left) + dfs(root.right)
return ans or [root.val]
return dfs(root1) == dfs(root2)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean leafSimilar(TreeNode root1, TreeNode root2) {
List<Integer> l1 = dfs(root1);
List<Integer> l2 = dfs(root2);
return l1.equals(l2);
}
private List<Integer> dfs(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
List<Integer> ans = dfs(root.left);
ans.addAll(dfs(root.right));
if (ans.isEmpty()) {
ans.add(root.val);
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool leafSimilar(TreeNode* root1, TreeNode* root2) {
return dfs(root1) == dfs(root2);
}
vector<int> dfs(TreeNode* root) {
if (!root) return {};
auto ans = dfs(root->left);
auto right = dfs(root->right);
ans.insert(ans.end(), right.begin(), right.end());
if (ans.empty()) ans.push_back(root->val);
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func leafSimilar(root1 *TreeNode, root2 *TreeNode) bool {
var dfs func(*TreeNode) []int
dfs = func(root *TreeNode) []int {
if root == nil {
return []int{}
}
ans := dfs(root.Left)
ans = append(ans, dfs(root.Right)...)
if len(ans) == 0 {
ans = append(ans, root.Val)
}
return ans
}
return reflect.DeepEqual(dfs(root1), dfs(root2))
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
#[allow(dead_code)]
pub fn leaf_similar(
root1: Option<Rc<RefCell<TreeNode>>>,
root2: Option<Rc<RefCell<TreeNode>>>
) -> bool {
let mut one_vec: Vec<i32> = Vec::new();
let mut two_vec: Vec<i32> = Vec::new();
// Initialize the two vector
Self::traverse(&mut one_vec, root1);
Self::traverse(&mut two_vec, root2);
one_vec == two_vec
}
#[allow(dead_code)]
fn traverse(v: &mut Vec<i32>, root: Option<Rc<RefCell<TreeNode>>>) {
if root.is_none() {
return;
}
if Self::is_leaf_node(&root) {
v.push(root.as_ref().unwrap().borrow().val);
}
let left = root.as_ref().unwrap().borrow().left.clone();
let right = root.as_ref().unwrap().borrow().right.clone();
Self::traverse(v, left);
Self::traverse(v, right);
}
#[allow(dead_code)]
fn is_leaf_node(node: &Option<Rc<RefCell<TreeNode>>>) -> bool {
node.as_ref().unwrap().borrow().left.is_none() &&
node.as_ref().unwrap().borrow().right.is_none()
}
}