存在一个由 n
个节点组成的无向连通图,图中的节点按从 0
到 n - 1
编号。
给你一个数组 graph
表示这个图。其中,graph[i]
是一个列表,由所有与节点 i
直接相连的节点组成。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:graph = [[1,2,3],[0],[0],[0]] 输出:4 解释:一种可能的路径为 [1,0,2,0,3]
示例 2:
输入:graph = [[1],[0,2,4],[1,3,4],[2],[1,2]] 输出:4 解释:一种可能的路径为 [0,1,4,2,3]
提示:
n == graph.length
1 <= n <= 12
0 <= graph[i].length < n
graph[i]
不包含i
- 如果
graph[a]
包含b
,那么graph[b]
也包含a
- 输入的图总是连通图
我们注意到
我们初始化队列
在 BFS 的过程中,我们每次取出队首元素
时间复杂度
class Solution:
def shortestPathLength(self, graph: List[List[int]]) -> int:
n = len(graph)
q = deque()
vis = set()
for i in range(n):
q.append((i, 1 << i))
vis.add((i, 1 << i))
ans = 0
while 1:
for _ in range(len(q)):
i, st = q.popleft()
if st == (1 << n) - 1:
return ans
for j in graph[i]:
nst = st | 1 << j
if (j, nst) not in vis:
vis.add((j, nst))
q.append((j, nst))
ans += 1
class Solution {
public int shortestPathLength(int[][] graph) {
int n = graph.length;
Deque<int[]> q = new ArrayDeque<>();
boolean[][] vis = new boolean[n][1 << n];
for (int i = 0; i < n; ++i) {
q.offer(new int[] {i, 1 << i});
vis[i][1 << i] = true;
}
for (int ans = 0;; ++ans) {
for (int k = q.size(); k > 0; --k) {
var p = q.poll();
int i = p[0], st = p[1];
if (st == (1 << n) - 1) {
return ans;
}
for (int j : graph[i]) {
int nst = st | 1 << j;
if (!vis[j][nst]) {
vis[j][nst] = true;
q.offer(new int[] {j, nst});
}
}
}
}
}
}
class Solution {
public:
int shortestPathLength(vector<vector<int>>& graph) {
int n = graph.size();
queue<pair<int, int>> q;
bool vis[n][1 << n];
memset(vis, false, sizeof(vis));
for (int i = 0; i < n; ++i) {
q.emplace(i, 1 << i);
vis[i][1 << i] = true;
}
for (int ans = 0;; ++ans) {
for (int k = q.size(); k; --k) {
auto [i, st] = q.front();
q.pop();
if (st == (1 << n) - 1) {
return ans;
}
for (int j : graph[i]) {
int nst = st | 1 << j;
if (!vis[j][nst]) {
vis[j][nst] = true;
q.emplace(j, nst);
}
}
}
}
}
};
func shortestPathLength(graph [][]int) int {
n := len(graph)
q := [][2]int{}
vis := make([][]bool, n)
for i := range vis {
vis[i] = make([]bool, 1<<n)
vis[i][1<<i] = true
q = append(q, [2]int{i, 1 << i})
}
for ans := 0; ; ans++ {
for k := len(q); k > 0; k-- {
p := q[0]
q = q[1:]
i, st := p[0], p[1]
if st == (1<<n)-1 {
return ans
}
for _, j := range graph[i] {
nst := st | 1<<j
if !vis[j][nst] {
vis[j][nst] = true
q = append(q, [2]int{j, nst})
}
}
}
}
}
function shortestPathLength(graph: number[][]): number {
const n = graph.length;
const q: number[][] = [];
const vis: boolean[][] = new Array(n).fill(false).map(() => new Array(1 << n).fill(false));
for (let i = 0; i < n; ++i) {
q.push([i, 1 << i]);
vis[i][1 << i] = true;
}
for (let ans = 0; ; ++ans) {
for (let k = q.length; k; --k) {
const [i, st] = q.shift()!;
if (st === (1 << n) - 1) {
return ans;
}
for (const j of graph[i]) {
const nst = st | (1 << j);
if (!vis[j][nst]) {
vis[j][nst] = true;
q.push([j, nst]);
}
}
}
}
}
use std::collections::VecDeque;
impl Solution {
#[allow(dead_code)]
pub fn shortest_path_length(graph: Vec<Vec<i32>>) -> i32 {
let n = graph.len();
let mut vis = vec![vec![false; 1 << n]; n];
let mut q = VecDeque::new();
// Initialize the queue
for i in 0..n {
q.push_back(((i, 1 << i), 0));
vis[i][1 << i] = true;
}
// Begin BFS
while !q.is_empty() {
let ((i, st), count) = q.pop_front().unwrap();
if st == (1 << n) - 1 {
return count;
}
// If the path has not been visited
for j in &graph[i] {
let nst = st | (1 << *j);
if !vis[*j as usize][nst] {
q.push_back(((*j as usize, nst), count + 1));
vis[*j as usize][nst] = true;
}
}
}
-1
}
}
因为每条边权值一样,所以用 BFS 就能得出最短路径,过程中可以用状态压缩记录节点的访问情况。另外,同一个节点 u 以及对应的节点访问情况需要保证只被搜索过一次,因此可以用 vis(u, state)
表示是否已经被搜索过,防止无效的重复搜索。
本题也属于 BFS 最小步数模型,可以使用 A* 算法优化搜索。
A* 算法主要思想如下:
- 将 BFS 队列转换为优先队列(小根堆);
- 队列中的每个元素为
(dist[state] + f(state), state)
,dist[state]
表示从起点到当前 state 的距离,f(state)
表示从当前 state 到终点的估计距离,这两个距离之和作为堆排序的依据; - 当终点第一次出队时,说明找到了从起点到终点的最短路径,直接返回对应的 step;
f(state)
是估价函数,并且估价函数要满足f(state) <= g(state)
,其中g(state)
表示 state 到终点的真实距离;- A* 算法只能保证终点第一次出队时,即找到了一条从起点到终点的最小路径,不能保证其他点出队时也是从起点到当前点的最短路径。
class Solution:
def shortestPathLength(self, graph: List[List[int]]) -> int:
n = len(graph)
def f(state):
return sum(((state >> i) & 1) == 0 for i in range(n))
q = []
dist = [[inf] * (1 << n) for _ in range(n)]
for i in range(n):
heappush(q, (f(1 << i), i, 1 << i))
dist[i][1 << i] = 0
while q:
_, u, state = heappop(q)
if state == (1 << n) - 1:
return dist[u][state]
for v in graph[u]:
nxt = state | (1 << v)
if dist[v][nxt] > dist[u][state] + 1:
dist[v][nxt] = dist[u][state] + 1
heappush(q, (dist[v][nxt] + f(nxt), v, nxt))
return 0
class Solution {
private int n;
public int shortestPathLength(int[][] graph) {
n = graph.length;
int[][] dist = new int[n][1 << n];
for (int i = 0; i < n; ++i) {
Arrays.fill(dist[i], Integer.MAX_VALUE);
}
PriorityQueue<int[]> q = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
for (int i = 0; i < n; ++i) {
q.offer(new int[] {f(1 << i), i, 1 << i});
dist[i][1 << i] = 0;
}
while (!q.isEmpty()) {
int[] p = q.poll();
int u = p[1], state = p[2];
if (state == (1 << n) - 1) {
return dist[u][state];
}
for (int v : graph[u]) {
int nxt = state | (1 << v);
if (dist[v][nxt] > dist[u][state] + 1) {
dist[v][nxt] = dist[u][state] + 1;
q.offer(new int[] {dist[v][nxt] + f(nxt), v, nxt});
}
}
}
return 0;
}
private int f(int state) {
int ans = 0;
for (int i = 0; i < n; ++i) {
if (((state >> i) & 1) == 0) {
++ans;
}
}
return ans;
}
}
class Solution {
public:
int n;
int shortestPathLength(vector<vector<int>>& graph) {
n = graph.size();
priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<tuple<int, int, int>>> q;
vector<vector<int>> dist(n, vector<int>(1 << n, INT_MAX));
for (int i = 0; i < n; ++i) {
q.push({f(1 << i), i, 1 << i});
dist[i][1 << i] = 0;
}
while (!q.empty()) {
auto [_, u, state] = q.top();
q.pop();
if (state == (1 << n) - 1) return dist[u][state];
for (int v : graph[u]) {
int nxt = state | (1 << v);
if (dist[v][nxt] > dist[u][state] + 1) {
dist[v][nxt] = dist[u][state] + 1;
q.push({dist[v][nxt] + f(nxt), v, nxt});
}
}
}
return 0;
}
int f(int state) {
int ans = 0;
for (int i = 0; i < n; ++i)
if (((state >> i) & 1) == 0)
++ans;
return ans;
}
};