Skip to content

Latest commit

 

History

History
126 lines (107 loc) · 3.18 KB

File metadata and controls

126 lines (107 loc) · 3.18 KB

中文文档

Description

Given a string s, find the longest palindromic subsequence's length in s.

A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.

 

Example 1:

Input: s = "bbbab"
Output: 4
Explanation: One possible longest palindromic subsequence is "bbbb".

Example 2:

Input: s = "cbbd"
Output: 2
Explanation: One possible longest palindromic subsequence is "bb".

 

Constraints:

  • 1 <= s.length <= 1000
  • s consists only of lowercase English letters.

Solutions

Solution 1

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        n = len(s)
        dp = [[0] * n for _ in range(n)]
        for i in range(n):
            dp[i][i] = 1
        for j in range(1, n):
            for i in range(j - 1, -1, -1):
                if s[i] == s[j]:
                    dp[i][j] = dp[i + 1][j - 1] + 2
                else:
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
        return dp[0][-1]
class Solution {
    public int longestPalindromeSubseq(String s) {
        int n = s.length();
        int[][] dp = new int[n][n];
        for (int i = 0; i < n; ++i) {
            dp[i][i] = 1;
        }
        for (int j = 1; j < n; ++j) {
            for (int i = j - 1; i >= 0; --i) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
}
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n, 0));
        for (int i = 0; i < n; ++i) {
            dp[i][i] = 1;
        }
        for (int j = 1; j < n; ++j) {
            for (int i = j - 1; i >= 0; --i) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
};
func longestPalindromeSubseq(s string) int {
	n := len(s)
	dp := make([][]int, n)
	for i := 0; i < n; i++ {
		dp[i] = make([]int, n)
		dp[i][i] = 1
	}
	for j := 1; j < n; j++ {
		for i := j - 1; i >= 0; i-- {
			if s[i] == s[j] {
				dp[i][j] = dp[i+1][j-1] + 2
			} else {
				dp[i][j] = max(dp[i+1][j], dp[i][j-1])
			}
		}
	}
	return dp[0][n-1]
}