Skip to content

Latest commit

 

History

History
118 lines (100 loc) · 2.52 KB

File metadata and controls

118 lines (100 loc) · 2.52 KB

中文文档

Description

Given an integer n, return the largest palindromic integer that can be represented as the product of two n-digits integers. Since the answer can be very large, return it modulo 1337.

 

Example 1:

Input: n = 2
Output: 987
Explanation: 99 x 91 = 9009, 9009 % 1337 = 987

Example 2:

Input: n = 1
Output: 9

 

Constraints:

  • 1 <= n <= 8

Solutions

Solution 1

class Solution:
    def largestPalindrome(self, n: int) -> int:
        mx = 10**n - 1
        for a in range(mx, mx // 10, -1):
            b = x = a
            while b:
                x = x * 10 + b % 10
                b //= 10
            t = mx
            while t * t >= x:
                if x % t == 0:
                    return x % 1337
                t -= 1
        return 9
class Solution {
    public int largestPalindrome(int n) {
        int mx = (int) Math.pow(10, n) - 1;
        for (int a = mx; a > mx / 10; --a) {
            int b = a;
            long x = a;
            while (b != 0) {
                x = x * 10 + b % 10;
                b /= 10;
            }
            for (long t = mx; t * t >= x; --t) {
                if (x % t == 0) {
                    return (int) (x % 1337);
                }
            }
        }
        return 9;
    }
}
class Solution {
public:
    int largestPalindrome(int n) {
        int mx = pow(10, n) - 1;
        for (int a = mx; a > mx / 10; --a) {
            int b = a;
            long x = a;
            while (b) {
                x = x * 10 + b % 10;
                b /= 10;
            }
            for (long t = mx; t * t >= x; --t)
                if (x % t == 0)
                    return x % 1337;
        }
        return 9;
    }
};
func largestPalindrome(n int) int {
	mx := int(math.Pow10(n)) - 1
	for a := mx; a > mx/10; a-- {
		x := a
		for b := a; b != 0; b /= 10 {
			x = x*10 + b%10
		}
		for t := mx; t*t >= x; t-- {
			if x%t == 0 {
				return x % 1337
			}
		}
	}
	return 9
}