Given an integer n, return the largest palindromic integer that can be represented as the product of two n
-digits integers. Since the answer can be very large, return it modulo 1337
.
Example 1:
Input: n = 2 Output: 987 Explanation: 99 x 91 = 9009, 9009 % 1337 = 987
Example 2:
Input: n = 1 Output: 9
Constraints:
1 <= n <= 8
class Solution:
def largestPalindrome(self, n: int) -> int:
mx = 10**n - 1
for a in range(mx, mx // 10, -1):
b = x = a
while b:
x = x * 10 + b % 10
b //= 10
t = mx
while t * t >= x:
if x % t == 0:
return x % 1337
t -= 1
return 9
class Solution {
public int largestPalindrome(int n) {
int mx = (int) Math.pow(10, n) - 1;
for (int a = mx; a > mx / 10; --a) {
int b = a;
long x = a;
while (b != 0) {
x = x * 10 + b % 10;
b /= 10;
}
for (long t = mx; t * t >= x; --t) {
if (x % t == 0) {
return (int) (x % 1337);
}
}
}
return 9;
}
}
class Solution {
public:
int largestPalindrome(int n) {
int mx = pow(10, n) - 1;
for (int a = mx; a > mx / 10; --a) {
int b = a;
long x = a;
while (b) {
x = x * 10 + b % 10;
b /= 10;
}
for (long t = mx; t * t >= x; --t)
if (x % t == 0)
return x % 1337;
}
return 9;
}
};
func largestPalindrome(n int) int {
mx := int(math.Pow10(n)) - 1
for a := mx; a > mx/10; a-- {
x := a
for b := a; b != 0; b /= 10 {
x = x*10 + b%10
}
for t := mx; t*t >= x; t-- {
if x%t == 0 {
return x % 1337
}
}
}
return 9
}