Skip to content

Latest commit

 

History

History
741 lines (636 loc) · 19.6 KB

File metadata and controls

741 lines (636 loc) · 19.6 KB

English Version

题目描述

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键 key 存在于缓存中,则获取键的值,否则返回 -1
  • void put(int key, int value) - 如果键 key 已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity 时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 getput 操作,使用计数器的值将会递增。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

 

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);   // cache=[1,_], cnt(1)=1
lfu.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1);      // 返回 1
                 // cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                 // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                 // cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4);      // 返回 4
                 // cache=[3,4], cnt(4)=2, cnt(3)=3

 

提示:

  • 1 <= capacity <= 104
  • 0 <= key <= 105
  • 0 <= value <= 109
  • 最多调用 2 * 105getput 方法

解法

方法一:双哈希表 + 双向链表

我们定义两个哈希表,其中:

  • 哈希表 $map$:用于存储缓存的键值对,哈希表的键 $key$ 对应到缓存节点 $node$,方便 $O(1)$ 时间内获取缓存节点。
  • 哈希表 $freqMap$:用于存储使用频率相同的缓存节点的双向链表,哈希表的键 $freq$ 对应到双向链表 $list$,方便 $O(1)$ 时间内获取使用频率相同的缓存节点的双向链表。

另外,我们还需要维护一个变量 $minFreq$,用于记录当前最小的使用频率,方便 $O(1)$ 时间内获取最小使用频率的缓存节点。

对于 $get(key)$ 操作:

我们首先判断 $capacity$ 是否为 $0$ 或者 $map$ 中是否存在键 $key$,如果不存在则返回 $-1$;否则从 $map$ 中获取缓存节点 $node$,并将 $node$ 的使用频率加 $1$,最后返回 $node$ 的值。

对于 $put(key, value)$ 操作:

我们首先判断 $capacity$ 是否为 $0$,如果为 $0$ 则直接返回;

否则判断 $map$ 中是否存在键 $key$,如果存在则从 $map$ 中获取缓存节点 $node$,更新 $node$ 的值为 $value$,并将 $node$ 的使用频率加 $1$,最后返回 $node$ 的值;

如果不存在则判断 $map$ 的长度是否等于 $capacity$,如果等于 $capacity$ 则从 $freqMap$ 中获取使用频率最小的双向链表 $list$,从 $list$ 中删除最后一个节点,并且移除该节点对应的键值对。然后创建新的缓存节点 $node$,将 $node$ 的使用频率设置为 $1$,将 $node$ 添加到 $map$$freqMap$ 中,最后将 $minFreq$ 设置为 $1$

时间复杂度方面,操作 $get$$put$ 的时间复杂度都是 $O(1)$。空间复杂度 $O(n)$,其中 $n$ 为缓存的容量。

class Node:
    def __init__(self, key: int, value: int) -> None:
        self.key = key
        self.value = value
        self.freq = 1
        self.prev = None
        self.next = None


class DoublyLinkedList:
    def __init__(self) -> None:
        self.head = Node(-1, -1)
        self.tail = Node(-1, -1)
        self.head.next = self.tail
        self.tail.prev = self.head

    def add_first(self, node: Node) -> None:
        node.prev = self.head
        node.next = self.head.next
        self.head.next.prev = node
        self.head.next = node

    def remove(self, node: Node) -> Node:
        node.next.prev = node.prev
        node.prev.next = node.next
        node.next, node.prev = None, None
        return node

    def remove_last(self) -> Node:
        return self.remove(self.tail.prev)

    def is_empty(self) -> bool:
        return self.head.next == self.tail


class LFUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.min_freq = 0
        self.map = defaultdict(Node)
        self.freq_map = defaultdict(DoublyLinkedList)

    def get(self, key: int) -> int:
        if self.capacity == 0 or key not in self.map:
            return -1
        node = self.map[key]
        self.incr_freq(node)
        return node.value

    def put(self, key: int, value: int) -> None:
        if self.capacity == 0:
            return
        if key in self.map:
            node = self.map[key]
            node.value = value
            self.incr_freq(node)
            return
        if len(self.map) == self.capacity:
            ls = self.freq_map[self.min_freq]
            node = ls.remove_last()
            self.map.pop(node.key)
        node = Node(key, value)
        self.add_node(node)
        self.map[key] = node
        self.min_freq = 1

    def incr_freq(self, node: Node) -> None:
        freq = node.freq
        ls = self.freq_map[freq]
        ls.remove(node)
        if ls.is_empty():
            self.freq_map.pop(freq)
            if freq == self.min_freq:
                self.min_freq += 1
        node.freq += 1
        self.add_node(node)

    def add_node(self, node: Node) -> None:
        freq = node.freq
        ls = self.freq_map[freq]
        ls.add_first(node)
        self.freq_map[freq] = ls


# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class LFUCache {

    private final Map<Integer, Node> map;
    private final Map<Integer, DoublyLinkedList> freqMap;
    private final int capacity;
    private int minFreq;

    public LFUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>(capacity, 1);
        freqMap = new HashMap<>();
    }

    public int get(int key) {
        if (capacity == 0) {
            return -1;
        }
        if (!map.containsKey(key)) {
            return -1;
        }
        Node node = map.get(key);
        incrFreq(node);
        return node.value;
    }

    public void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        if (map.containsKey(key)) {
            Node node = map.get(key);
            node.value = value;
            incrFreq(node);
            return;
        }
        if (map.size() == capacity) {
            DoublyLinkedList list = freqMap.get(minFreq);
            map.remove(list.removeLast().key);
        }
        Node node = new Node(key, value);
        addNode(node);
        map.put(key, node);
        minFreq = 1;
    }

    private void incrFreq(Node node) {
        int freq = node.freq;
        DoublyLinkedList list = freqMap.get(freq);
        list.remove(node);
        if (list.isEmpty()) {
            freqMap.remove(freq);
            if (freq == minFreq) {
                minFreq++;
            }
        }
        node.freq++;
        addNode(node);
    }

    private void addNode(Node node) {
        int freq = node.freq;
        DoublyLinkedList list = freqMap.getOrDefault(freq, new DoublyLinkedList());
        list.addFirst(node);
        freqMap.put(freq, list);
    }

    private static class Node {
        int key;
        int value;
        int freq;
        Node prev;
        Node next;

        Node(int key, int value) {
            this.key = key;
            this.value = value;
            this.freq = 1;
        }
    }

    private static class DoublyLinkedList {

        private final Node head;
        private final Node tail;

        public DoublyLinkedList() {
            head = new Node(-1, -1);
            tail = new Node(-1, -1);
            head.next = tail;
            tail.prev = head;
        }

        public void addFirst(Node node) {
            node.prev = head;
            node.next = head.next;
            head.next.prev = node;
            head.next = node;
        }

        public Node remove(Node node) {
            node.next.prev = node.prev;
            node.prev.next = node.next;
            node.next = null;
            node.prev = null;
            return node;
        }

        public Node removeLast() {
            return remove(tail.prev);
        }

        public boolean isEmpty() {
            return head.next == tail;
        }
    }
}
class Node {
public:
    int key;
    int value;
    int freq;
    Node* prev;
    Node* next;
    Node(int key, int value) {
        this->key = key;
        this->value = value;
        this->freq = 1;
        this->prev = nullptr;
        this->next = nullptr;
    }
};

class DoublyLinkedList {
public:
    Node* head;
    Node* tail;
    DoublyLinkedList() {
        this->head = new Node(-1, -1);
        this->tail = new Node(-1, -1);
        this->head->next = this->tail;
        this->tail->prev = this->head;
    }
    void addFirst(Node* node) {
        node->prev = this->head;
        node->next = this->head->next;
        this->head->next->prev = node;
        this->head->next = node;
    }
    Node* remove(Node* node) {
        node->next->prev = node->prev;
        node->prev->next = node->next;
        node->next = nullptr;
        node->prev = nullptr;
        return node;
    }
    Node* removeLast() {
        return remove(this->tail->prev);
    }
    bool isEmpty() {
        return this->head->next == this->tail;
    }
};

class LFUCache {
public:
    LFUCache(int capacity) {
        this->capacity = capacity;
        this->minFreq = 0;
    }

    int get(int key) {
        if (capacity == 0 || map.find(key) == map.end()) {
            return -1;
        }
        Node* node = map[key];
        incrFreq(node);
        return node->value;
    }

    void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        if (map.find(key) != map.end()) {
            Node* node = map[key];
            node->value = value;
            incrFreq(node);
            return;
        }
        if (map.size() == capacity) {
            DoublyLinkedList* list = freqMap[minFreq];
            Node* node = list->removeLast();
            map.erase(node->key);
        }
        Node* node = new Node(key, value);
        addNode(node);
        map[key] = node;
        minFreq = 1;
    }

private:
    int capacity;
    int minFreq;
    unordered_map<int, Node*> map;
    unordered_map<int, DoublyLinkedList*> freqMap;

    void incrFreq(Node* node) {
        int freq = node->freq;
        DoublyLinkedList* list = freqMap[freq];
        list->remove(node);
        if (list->isEmpty()) {
            freqMap.erase(freq);
            if (freq == minFreq) {
                minFreq++;
            }
        }
        node->freq++;
        addNode(node);
    }

    void addNode(Node* node) {
        int freq = node->freq;
        if (freqMap.find(freq) == freqMap.end()) {
            freqMap[freq] = new DoublyLinkedList();
        }
        DoublyLinkedList* list = freqMap[freq];
        list->addFirst(node);
        freqMap[freq] = list;
    }
};

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache* obj = new LFUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */
type LFUCache struct {
	cache    map[int]*node
	freqMap  map[int]*list
	minFreq  int
	capacity int
}

func Constructor(capacity int) LFUCache {
	return LFUCache{
		cache:    make(map[int]*node),
		freqMap:  make(map[int]*list),
		capacity: capacity,
	}
}

func (this *LFUCache) Get(key int) int {
	if this.capacity == 0 {
		return -1
	}

	n, ok := this.cache[key]
	if !ok {
		return -1
	}

	this.incrFreq(n)
	return n.val
}

func (this *LFUCache) Put(key int, value int) {
	if this.capacity == 0 {
		return
	}

	n, ok := this.cache[key]
	if ok {
		n.val = value
		this.incrFreq(n)
		return
	}

	if len(this.cache) == this.capacity {
		l := this.freqMap[this.minFreq]
		delete(this.cache, l.removeBack().key)
	}
	n = &node{key: key, val: value, freq: 1}
	this.addNode(n)
	this.cache[key] = n
	this.minFreq = 1
}

func (this *LFUCache) incrFreq(n *node) {
	l := this.freqMap[n.freq]
	l.remove(n)
	if l.empty() {
		delete(this.freqMap, n.freq)
		if n.freq == this.minFreq {
			this.minFreq++
		}
	}
	n.freq++
	this.addNode(n)
}

func (this *LFUCache) addNode(n *node) {
	l, ok := this.freqMap[n.freq]
	if !ok {
		l = newList()
		this.freqMap[n.freq] = l
	}
	l.pushFront(n)
}

type node struct {
	key  int
	val  int
	freq int
	prev *node
	next *node
}

type list struct {
	head *node
	tail *node
}

func newList() *list {
	head := new(node)
	tail := new(node)
	head.next = tail
	tail.prev = head
	return &list{
		head: head,
		tail: tail,
	}
}

func (l *list) pushFront(n *node) {
	n.prev = l.head
	n.next = l.head.next
	l.head.next.prev = n
	l.head.next = n
}

func (l *list) remove(n *node) {
	n.prev.next = n.next
	n.next.prev = n.prev
	n.next = nil
	n.prev = nil
}

func (l *list) removeBack() *node {
	n := l.tail.prev
	l.remove(n)
	return n
}

func (l *list) empty() bool {
	return l.head.next == l.tail
}
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;

struct Node {
    key: i32,
    value: i32,
    freq: i32,
    prev: Option<Rc<RefCell<Node>>>,
    next: Option<Rc<RefCell<Node>>>,
}

impl Node {
    fn new(key: i32, value: i32) -> Self {
        Self {
            key,
            value,
            freq: 1,
            prev: None,
            next: None,
        }
    }
}

struct LinkedList {
    head: Option<Rc<RefCell<Node>>>,
    tail: Option<Rc<RefCell<Node>>>,
}

impl LinkedList {
    fn new() -> Self {
        Self {
            head: None,
            tail: None,
        }
    }

    fn push_front(&mut self, node: &Rc<RefCell<Node>>) {
        match self.head.take() {
            Some(head) => {
                head.borrow_mut().prev = Some(Rc::clone(node));
                node.borrow_mut().prev = None;
                node.borrow_mut().next = Some(head);
                self.head = Some(Rc::clone(node));
            }
            None => {
                node.borrow_mut().prev = None;
                node.borrow_mut().next = None;
                self.head = Some(Rc::clone(node));
                self.tail = Some(Rc::clone(node));
            }
        };
    }

    fn remove(&mut self, node: &Rc<RefCell<Node>>) {
        match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) {
            (None, None) => {
                self.head = None;
                self.tail = None;
            }
            (None, Some(next)) => {
                self.head = Some(Rc::clone(next));
                next.borrow_mut().prev = None;
            }
            (Some(prev), None) => {
                self.tail = Some(Rc::clone(prev));
                prev.borrow_mut().next = None;
            }
            (Some(prev), Some(next)) => {
                next.borrow_mut().prev = Some(Rc::clone(prev));
                prev.borrow_mut().next = Some(Rc::clone(next));
            }
        };
    }

    fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> {
        match self.tail.take() {
            Some(tail) => {
                self.remove(&tail);
                Some(tail)
            }
            None => None,
        }
    }

    fn is_empty(&self) -> bool {
        self.head.is_none()
    }
}

struct LFUCache {
    cache: HashMap<i32, Rc<RefCell<Node>>>,
    freq_map: HashMap<i32, LinkedList>,
    min_freq: i32,
    capacity: usize,
}

/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl LFUCache {
    fn new(capacity: i32) -> Self {
        Self {
            cache: HashMap::new(),
            freq_map: HashMap::new(),
            min_freq: 0,
            capacity: capacity as usize,
        }
    }

    fn get(&mut self, key: i32) -> i32 {
        if self.capacity == 0 {
            return -1;
        }

        match self.cache.get(&key) {
            Some(node) => {
                let node = Rc::clone(node);
                self.incr_freq(&node);
                let value = node.borrow().value;
                value
            }
            None => -1,
        }
    }

    fn put(&mut self, key: i32, value: i32) {
        if self.capacity == 0 {
            return;
        }

        match self.cache.get(&key) {
            Some(node) => {
                let node = Rc::clone(node);
                node.borrow_mut().value = value;
                self.incr_freq(&node);
            }
            None => {
                if self.cache.len() == self.capacity {
                    let list = self.freq_map.get_mut(&self.min_freq).unwrap();
                    self.cache.remove(&list.pop_back().unwrap().borrow().key);
                }
                let node = Rc::new(RefCell::new(Node::new(key, value)));
                self.add_node(&node);
                self.cache.insert(key, node);
                self.min_freq = 1;
            }
        };
    }

    fn incr_freq(&mut self, node: &Rc<RefCell<Node>>) {
        let freq = node.borrow().freq;
        let list = self.freq_map.get_mut(&freq).unwrap();
        list.remove(node);
        if list.is_empty() {
            self.freq_map.remove(&freq);
            if freq == self.min_freq {
                self.min_freq += 1;
            }
        }
        node.borrow_mut().freq += 1;
        self.add_node(node);
    }

    fn add_node(&mut self, node: &Rc<RefCell<Node>>) {
        let freq = node.borrow().freq;
        match self.freq_map.get_mut(&freq) {
            Some(list) => {
                list.push_front(node);
            }
            None => {
                let mut list = LinkedList::new();
                list.push_front(node);
                self.freq_map.insert(node.borrow().freq, list);
            }
        };
    }
}/**
 * Your LFUCache object will be instantiated and called as such:
 * let obj = LFUCache::new(capacity);
 * let ret_1: i32 = obj.get(key);
 * obj.put(key, value);
 */