Given the root
of a complete binary tree, return the number of the nodes in the tree.
According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1
and 2h
nodes inclusive at the last level h
.
Design an algorithm that runs in less than O(n)
time complexity.
Example 1:
Input: root = [1,2,3,4,5,6] Output: 6
Example 2:
Input: root = [] Output: 0
Example 3:
Input: root = [1] Output: 1
Constraints:
- The number of nodes in the tree is in the range
[0, 5 * 104]
. 0 <= Node.val <= 5 * 104
- The tree is guaranteed to be complete.
We recursively traverse the entire tree and count the number of nodes.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
return 1 + self.countNodes(root.left) + self.countNodes(root.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + countNodes(root.left) + countNodes(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int countNodes(TreeNode* root) {
if (!root) {
return 0;
}
return 1 + countNodes(root->left) + countNodes(root->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func countNodes(root *TreeNode) int {
if root == nil {
return 0
}
return 1 + countNodes(root.Left) + countNodes(root.Right)
}
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn count_nodes(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
if let Some(node) = root {
let node = node.borrow();
let left = Self::depth(&node.left);
let right = Self::depth(&node.right);
if left == right {
Self::count_nodes(node.right.clone()) + (1 << left)
} else {
Self::count_nodes(node.left.clone()) + (1 << right)
}
} else {
0
}
}
fn depth(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
if let Some(node) = root { Self::depth(&node.borrow().left) + 1 } else { 0 }
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var countNodes = function (root) {
if (!root) {
return 0;
}
return 1 + countNodes(root.left) + countNodes(root.right);
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int CountNodes(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + CountNodes(root.left) + CountNodes(root.right);
}
}
For this problem, we can also take advantage of the characteristics of a complete binary tree to design a faster algorithm.
Characteristics of a complete binary tree: leaf nodes can only appear on the bottom and second-to-bottom layers, and the leaf nodes on the bottom layer are concentrated on the left side of the tree. It should be noted that a full binary tree is definitely a complete binary tree, but a complete binary tree is not necessarily a full binary tree.
If the number of layers in a full binary tree is
We first count the heights of the left and right subtrees of
- If
$left = right$ , it means that the left subtree is a full binary tree, so the total number of nodes in the left subtree is$2^{left} - 1$ . Plus the$root$ node, it is$2^{left}$ . Then we recursively count the right subtree. - If
$left > right$ , it means that the right subtree is a full binary tree, so the total number of nodes in the right subtree is$2^{right} - 1$ . Plus the$root$ node, it is$2^{right}$ . Then we recursively count the left subtree.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
def depth(root):
d = 0
while root:
d += 1
root = root.left
return d
if root is None:
return 0
left, right = depth(root.left), depth(root.right)
if left == right:
return (1 << left) + self.countNodes(root.right)
return (1 << right) + self.countNodes(root.left)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
int left = depth(root.left);
int right = depth(root.right);
if (left == right) {
return (1 << left) + countNodes(root.right);
}
return (1 << right) + countNodes(root.left);
}
private int depth(TreeNode root) {
int d = 0;
for (; root != null; root = root.left) {
++d;
}
return d;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int countNodes(TreeNode* root) {
if (!root) {
return 0;
}
int left = depth(root->left);
int right = depth(root->right);
if (left == right) {
return (1 << left) + countNodes(root->right);
}
return (1 << right) + countNodes(root->left);
}
int depth(TreeNode* root) {
int d = 0;
for (; root; root = root->left) {
++d;
}
return d;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func countNodes(root *TreeNode) int {
if root == nil {
return 0
}
left, right := depth(root.Left), depth(root.Right)
if left == right {
return (1 << left) + countNodes(root.Right)
}
return (1 << right) + countNodes(root.Left)
}
func depth(root *TreeNode) (d int) {
for ; root != nil; root = root.Left {
d++
}
return
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var countNodes = function (root) {
const depth = root => {
let d = 0;
for (; root; root = root.left) {
++d;
}
return d;
};
if (!root) {
return 0;
}
const left = depth(root.left);
const right = depth(root.right);
if (left == right) {
return (1 << left) + countNodes(root.right);
}
return (1 << right) + countNodes(root.left);
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int CountNodes(TreeNode root) {
if (root == null) {
return 0;
}
int left = depth(root.left);
int right = depth(root.right);
if (left == right) {
return (1 << left) + CountNodes(root.right);
}
return (1 << right) + CountNodes(root.left);
}
private int depth(TreeNode root) {
int d = 0;
for (; root != null; root = root.left) {
++d;
}
return d;
}
}