A permutation of an array of integers is an arrangement of its members into a sequence or linear order.
- For example, for
arr = [1,2,3]
, the following are all the permutations ofarr
:[1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1]
.
The next permutation of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the next permutation of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order).
- For example, the next permutation of
arr = [1,2,3]
is[1,3,2]
. - Similarly, the next permutation of
arr = [2,3,1]
is[3,1,2]
. - While the next permutation of
arr = [3,2,1]
is[1,2,3]
because[3,2,1]
does not have a lexicographical larger rearrangement.
Given an array of integers nums
, find the next permutation of nums
.
The replacement must be in place and use only constant extra memory.
Example 1:
Input: nums = [1,2,3] Output: [1,3,2]
Example 2:
Input: nums = [3,2,1] Output: [1,2,3]
Example 3:
Input: nums = [1,1,5] Output: [1,5,1]
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 100
We first traverse the array from back to front and find the first position
Then traverse the array from back to front again and find the first position
The time complexity is
class Solution:
def nextPermutation(self, nums: List[int]) -> None:
n = len(nums)
i = next((i for i in range(n - 2, -1, -1) if nums[i] < nums[i + 1]), -1)
if ~i:
j = next((j for j in range(n - 1, i, -1) if nums[j] > nums[i]))
nums[i], nums[j] = nums[j], nums[i]
nums[i + 1 :] = nums[i + 1 :][::-1]
class Solution {
public void nextPermutation(int[] nums) {
int n = nums.length;
int i = n - 2;
for (; i >= 0; --i) {
if (nums[i] < nums[i + 1]) {
break;
}
}
if (i >= 0) {
for (int j = n - 1; j > i; --j) {
if (nums[j] > nums[i]) {
swap(nums, i, j);
break;
}
}
}
for (int j = i + 1, k = n - 1; j < k; ++j, --k) {
swap(nums, j, k);
}
}
private void swap(int[] nums, int i, int j) {
int t = nums[j];
nums[j] = nums[i];
nums[i] = t;
}
}
class Solution {
public:
void nextPermutation(vector<int>& nums) {
int n = nums.size();
int i = n - 2;
while (~i && nums[i] >= nums[i + 1]) {
--i;
}
if (~i) {
for (int j = n - 1; j > i; --j) {
if (nums[j] > nums[i]) {
swap(nums[i], nums[j]);
break;
}
}
}
reverse(nums.begin() + i + 1, nums.end());
}
};
func nextPermutation(nums []int) {
n := len(nums)
i := n - 2
for ; i >= 0 && nums[i] >= nums[i+1]; i-- {
}
if i >= 0 {
for j := n - 1; j > i; j-- {
if nums[j] > nums[i] {
nums[i], nums[j] = nums[j], nums[i]
break
}
}
}
for j, k := i+1, n-1; j < k; j, k = j+1, k-1 {
nums[j], nums[k] = nums[k], nums[j]
}
}
function nextPermutation(nums: number[]): void {
const n = nums.length;
let i = n - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
--i;
}
if (i >= 0) {
for (let j = n - 1; j > i; --j) {
if (nums[j] > nums[i]) {
[nums[i], nums[j]] = [nums[j], nums[i]];
break;
}
}
}
for (let j = n - 1; j > i; --j, ++i) {
[nums[i + 1], nums[j]] = [nums[j], nums[i + 1]];
}
}
/**
* @param {number[]} nums
* @return {void} Do not return anything, modify nums in-place instead.
*/
var nextPermutation = function (nums) {
const n = nums.length;
let i = n - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
--i;
}
if (i >= 0) {
let j = n - 1;
while (j > i && nums[j] <= nums[i]) {
--j;
}
[nums[i], nums[j]] = [nums[j], nums[i]];
}
for (i = i + 1, j = n - 1; i < j; ++i, --j) {
[nums[i], nums[j]] = [nums[j], nums[i]];
}
};
public class Solution {
public void NextPermutation(int[] nums) {
int n = nums.Length;
int i = n - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
--i;
}
if (i >= 0) {
for (int j = n - 1; j > i; --j) {
if (nums[j] > nums[i]) {
swap(nums, i, j);
break;
}
}
}
for (int j = i + 1, k = n - 1; j < k; ++j, --k) {
swap(nums, j, k);
}
}
private void swap(int[] nums, int i, int j) {
int t = nums[j];
nums[j] = nums[i];
nums[i] = t;
}
}