给定一个字符串 s
和一个字符串数组 words
。 words
中所有字符串 长度相同。
s
中的 串联子串 是指一个包含 words
中所有字符串以任意顺序排列连接起来的子串。
- 例如,如果
words = ["ab","cd","ef"]
, 那么"abcdef"
,"abefcd"
,"cdabef"
,"cdefab"
,"efabcd"
, 和"efcdab"
都是串联子串。"acdbef"
不是串联子串,因为他不是任何words
排列的连接。
返回所有串联子串在 s
中的开始索引。你可以以 任意顺序 返回答案。
示例 1:
输入:s = "barfoothefoobarman", words = ["foo","bar"]
输出:[0,9]
解释:因为 words.length == 2 同时 words[i].length == 3,连接的子字符串的长度必须为 6。
子串 "barfoo" 开始位置是 0。它是 words 中以 ["bar","foo"] 顺序排列的连接。
子串 "foobar" 开始位置是 9。它是 words 中以 ["foo","bar"] 顺序排列的连接。
输出顺序无关紧要。返回 [9,0] 也是可以的。
示例 2:
输入:s = "wordgoodgoodgoodbestword", words = ["word","good","best","word"]
输出:[]
解释:因为 words.length == 4 并且 words[i].length == 4,所以串联子串的长度必须为 16。
s 中没有子串长度为 16 并且等于 words 的任何顺序排列的连接。
所以我们返回一个空数组。
示例 3:
输入:s = "barfoofoobarthefoobarman", words = ["bar","foo","the"] 输出:[6,9,12] 解释:因为 words.length == 3 并且 words[i].length == 3,所以串联子串的长度必须为 9。 子串 "foobarthe" 开始位置是 6。它是 words 中以 ["foo","bar","the"] 顺序排列的连接。 子串 "barthefoo" 开始位置是 9。它是 words 中以 ["bar","the","foo"] 顺序排列的连接。 子串 "thefoobar" 开始位置是 12。它是 words 中以 ["the","foo","bar"] 顺序排列的连接。
提示:
1 <= s.length <= 104
1 <= words.length <= 5000
1 <= words[i].length <= 30
words[i]
和s
由小写英文字母组成
我们用哈希表
我们可以枚举滑动窗口的起点
每一次,我们提取字符串
时间复杂度
class Solution:
def findSubstring(self, s: str, words: List[str]) -> List[int]:
cnt = Counter(words)
m, n = len(s), len(words)
k = len(words[0])
ans = []
for i in range(k):
cnt1 = Counter()
l = r = i
t = 0
while r + k <= m:
w = s[r : r + k]
r += k
if w not in cnt:
l = r
cnt1.clear()
t = 0
continue
cnt1[w] += 1
t += 1
while cnt1[w] > cnt[w]:
remove = s[l : l + k]
l += k
cnt1[remove] -= 1
t -= 1
if t == n:
ans.append(l)
return ans
class Solution {
public List<Integer> findSubstring(String s, String[] words) {
Map<String, Integer> cnt = new HashMap<>();
for (String w : words) {
cnt.merge(w, 1, Integer::sum);
}
int m = s.length(), n = words.length;
int k = words[0].length();
List<Integer> ans = new ArrayList<>();
for (int i = 0; i < k; ++i) {
Map<String, Integer> cnt1 = new HashMap<>();
int l = i, r = i;
int t = 0;
while (r + k <= m) {
String w = s.substring(r, r + k);
r += k;
if (!cnt.containsKey(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
cnt1.merge(w, 1, Integer::sum);
++t;
while (cnt1.get(w) > cnt.get(w)) {
String remove = s.substring(l, l + k);
l += k;
cnt1.merge(remove, -1, Integer::sum);
--t;
}
if (t == n) {
ans.add(l);
}
}
}
return ans;
}
}
class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
unordered_map<string, int> cnt;
for (auto& w : words) {
++cnt[w];
}
int m = s.size(), n = words.size(), k = words[0].size();
vector<int> ans;
for (int i = 0; i < k; ++i) {
unordered_map<string, int> cnt1;
int l = i, r = i;
int t = 0;
while (r + k <= m) {
string w = s.substr(r, k);
r += k;
if (!cnt.count(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
++cnt1[w];
++t;
while (cnt1[w] > cnt[w]) {
string remove = s.substr(l, k);
l += k;
--cnt1[remove];
--t;
}
if (t == n) {
ans.push_back(l);
}
}
}
return ans;
}
};
func findSubstring(s string, words []string) (ans []int) {
cnt := map[string]int{}
for _, w := range words {
cnt[w]++
}
m, n, k := len(s), len(words), len(words[0])
for i := 0; i < k; i++ {
cnt1 := map[string]int{}
l, r, t := i, i, 0
for r+k <= m {
w := s[r : r+k]
r += k
if _, ok := cnt[w]; !ok {
l, t = r, 0
cnt1 = map[string]int{}
continue
}
cnt1[w]++
t++
for cnt1[w] > cnt[w] {
cnt1[s[l:l+k]]--
l += k
t--
}
if t == n {
ans = append(ans, l)
}
}
}
return
}
function findSubstring(s: string, words: string[]): number[] {
const cnt: Map<string, number> = new Map();
for (const w of words) {
cnt.set(w, (cnt.get(w) || 0) + 1);
}
const m = s.length;
const n = words.length;
const k = words[0].length;
const ans: number[] = [];
for (let i = 0; i < k; ++i) {
const cnt1: Map<string, number> = new Map();
let l = i;
let r = i;
let t = 0;
while (r + k <= m) {
const w = s.slice(r, r + k);
r += k;
if (!cnt.has(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
cnt1.set(w, (cnt1.get(w) || 0) + 1);
++t;
while (cnt1.get(w)! - cnt.get(w)! > 0) {
const remove = s.slice(l, l + k);
cnt1.set(remove, cnt1.get(remove)! - 1);
l += k;
--t;
}
if (t === n) {
ans.push(l);
}
}
}
return ans;
}
public class Solution {
public IList<int> FindSubstring(string s, string[] words) {
var cnt = new Dictionary<string, int>();
foreach (var w in words) {
if (!cnt.ContainsKey(w)) {
cnt[w] = 0;
}
++cnt[w];
}
int m = s.Length, n = words.Length, k = words[0].Length;
var ans = new List<int>();
for (int i = 0; i < k; ++i) {
var cnt1 = new Dictionary<string, int>();
int l = i, r = i, t = 0;
while (r + k <= m) {
var w = s.Substring(r, k);
r += k;
if (!cnt.ContainsKey(w)) {
cnt1.Clear();
t = 0;
l = r;
continue;
}
if (!cnt1.ContainsKey(w)) {
cnt1[w] = 0;
}
++cnt1[w];
++t;
while (cnt1[w] > cnt[w]) {
--cnt1[s.Substring(l, k)];
l += k;
--t;
}
if (t == n) {
ans.Add(l);
}
}
}
return ans;
}
}
class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
unordered_map<string, int> d;
for (auto& w : words) ++d[w];
vector<int> ans;
int n = s.size(), m = words.size(), k = words[0].size();
for (int i = 0; i < k; ++i) {
int cnt = 0;
unordered_map<string, int> t;
for (int j = i; j <= n; j += k) {
if (j - i >= m * k) {
auto s1 = s.substr(j - m * k, k);
--t[s1];
cnt -= d[s1] > t[s1];
}
auto s2 = s.substr(j, k);
++t[s2];
cnt += d[s2] >= t[s2];
if (cnt == m) ans.emplace_back(j - (m - 1) * k);
}
}
return ans;
}
};