Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
We notice that the problem does not require us to return the triplet in order, so we might as well sort the array first, which makes it easy to skip duplicate elements.
Next, we enumerate the first element of the triplet
The specific judgment logic is as follows:
If
If
Otherwise, we let the left pointer
- If
$x \lt 0$ , it means that$nums[j]$ is too small, we need to move$j$ to the right. - If
$x \gt 0$ , it means that$nums[k]$ is too large, we need to move$k$ to the left. - Otherwise, it means that we have found a valid triplet, add it to the answer, move
$j$ to the right, move$k$ to the left, and skip all duplicate elements to continue looking for the next valid triplet.
After the enumeration is over, we can get the answer to the triplet.
The time complexity is
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
nums.sort()
n = len(nums)
ans = []
for i in range(n - 2):
if nums[i] > 0:
break
if i and nums[i] == nums[i - 1]:
continue
j, k = i + 1, n - 1
while j < k:
x = nums[i] + nums[j] + nums[k]
if x < 0:
j += 1
elif x > 0:
k -= 1
else:
ans.append([nums[i], nums[j], nums[k]])
j, k = j + 1, k - 1
while j < k and nums[j] == nums[j - 1]:
j += 1
while j < k and nums[k] == nums[k + 1]:
k -= 1
return ans
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
int n = nums.length;
for (int i = 0; i < n - 2 && nums[i] <= 0; ++i) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int j = i + 1, k = n - 1;
while (j < k) {
int x = nums[i] + nums[j] + nums[k];
if (x < 0) {
++j;
} else if (x > 0) {
--k;
} else {
ans.add(List.of(nums[i], nums[j++], nums[k--]));
while (j < k && nums[j] == nums[j - 1]) {
++j;
}
while (j < k && nums[k] == nums[k + 1]) {
--k;
}
}
}
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> ans;
int n = nums.size();
for (int i = 0; i < n - 2 && nums[i] <= 0; ++i) {
if (i && nums[i] == nums[i - 1]) {
continue;
}
int j = i + 1, k = n - 1;
while (j < k) {
int x = nums[i] + nums[j] + nums[k];
if (x < 0) {
++j;
} else if (x > 0) {
--k;
} else {
ans.push_back({nums[i], nums[j++], nums[k--]});
while (j < k && nums[j] == nums[j - 1]) {
++j;
}
while (j < k && nums[k] == nums[k + 1]) {
--k;
}
}
}
}
return ans;
}
};
func threeSum(nums []int) (ans [][]int) {
sort.Ints(nums)
n := len(nums)
for i := 0; i < n-2 && nums[i] <= 0; i++ {
if i > 0 && nums[i] == nums[i-1] {
continue
}
j, k := i+1, n-1
for j < k {
x := nums[i] + nums[j] + nums[k]
if x < 0 {
j++
} else if x > 0 {
k--
} else {
ans = append(ans, []int{nums[i], nums[j], nums[k]})
j, k = j+1, k-1
for j < k && nums[j] == nums[j-1] {
j++
}
for j < k && nums[k] == nums[k+1] {
k--
}
}
}
}
return
}
function threeSum(nums: number[]): number[][] {
nums.sort((a, b) => a - b);
const ans: number[][] = [];
const n = nums.length;
for (let i = 0; i < n - 2 && nums[i] <= 0; i++) {
if (i > 0 && nums[i] === nums[i - 1]) {
continue;
}
let j = i + 1;
let k = n - 1;
while (j < k) {
const x = nums[i] + nums[j] + nums[k];
if (x < 0) {
++j;
} else if (x > 0) {
--k;
} else {
ans.push([nums[i], nums[j++], nums[k--]]);
while (j < k && nums[j] === nums[j - 1]) {
++j;
}
while (j < k && nums[k] === nums[k + 1]) {
--k;
}
}
}
}
return ans;
}
use std::cmp::Ordering;
impl Solution {
pub fn three_sum(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
nums.sort();
let n = nums.len();
let mut res = vec![];
let mut i = 0;
while i < n - 2 && nums[i] <= 0 {
let mut l = i + 1;
let mut r = n - 1;
while l < r {
match (nums[i] + nums[l] + nums[r]).cmp(&0) {
Ordering::Less => {
l += 1;
}
Ordering::Greater => {
r -= 1;
}
Ordering::Equal => {
res.push(vec![nums[i], nums[l], nums[r]]);
l += 1;
r -= 1;
while l < n && nums[l] == nums[l - 1] {
l += 1;
}
while r > 0 && nums[r] == nums[r + 1] {
r -= 1;
}
}
}
}
i += 1;
while i < n - 2 && nums[i] == nums[i - 1] {
i += 1;
}
}
res
}
}
/**
* @param {number[]} nums
* @return {number[][]}
*/
var threeSum = function (nums) {
const n = nums.length;
nums.sort((a, b) => a - b);
const ans = [];
for (let i = 0; i < n - 2 && nums[i] <= 0; ++i) {
if (i > 0 && nums[i] === nums[i - 1]) {
continue;
}
let j = i + 1;
let k = n - 1;
while (j < k) {
const x = nums[i] + nums[j] + nums[k];
if (x < 0) {
++j;
} else if (x > 0) {
--k;
} else {
ans.push([nums[i], nums[j++], nums[k--]]);
while (j < k && nums[j] === nums[j - 1]) {
++j;
}
while (j < k && nums[k] === nums[k + 1]) {
--k;
}
}
}
}
return ans;
};
public class Solution {
public IList<IList<int>> ThreeSum(int[] nums) {
Array.Sort(nums);
int n = nums.Length;
IList<IList<int>> ans = new List<IList<int>>();
for (int i = 0; i < n - 2 && nums[i] <= 0; ++i) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int j = i + 1, k = n - 1;
while (j < k) {
int x = nums[i] + nums[j] + nums[k];
if (x < 0) {
++j;
} else if (x > 0) {
--k;
} else {
ans.Add(new List<int> { nums[i], nums[j--], nums[k--] });
while (j < k && nums[j] == nums[j + 1]) {
++j;
}
while (j < k && nums[k] == nums[k + 1]) {
--k;
}
}
}
}
return ans;
}
}
# @param {Integer[]} nums
# @return {Integer[][]}
def three_sum(nums)
res = []
nums.sort!
for i in 0..(nums.length - 3)
next if i > 0 && nums[i - 1] == nums[i]
j = i + 1
k = nums.length - 1
while j < k do
sum = nums[i] + nums[j] + nums[k]
if sum < 0
j += 1
elsif sum > 0
k -= 1
else
res += [[nums[i], nums[j], nums[k]]]
j += 1
k -= 1
j += 1 while nums[j] == nums[j - 1]
k -= 1 while nums[k] == nums[k + 1]
end
end
end
res
end