-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtransformer.py
44 lines (33 loc) · 1.08 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import numpy as np
import torchvision.transforms as transforms
def transform_train(dataset_name):
if dataset_name == 'mnist':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),
])
else:
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),
])
return transform
def transform_test(dataset_name):
if dataset_name == 'mnist':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),
])
else:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),
])
return transform
def transform_target(label):
label = np.array(label)
target = torch.from_numpy(label).long()
return target