Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Run Large Multimodal Model on Intel NPU

In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.

Verified Models

Model Model Link
MiniCPM-Llama3-V-2_5 openbmb/MiniCPM-Llama3-V-2_5
MiniCPM-V-2_6 openbmb/MiniCPM-V-2_6
Speech_Paraformer-Large iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch

Please refer to Quickstart for details about verified platforms.

0. Prerequisites

For ipex-llm NPU support, please refer to Quickstart for details about the required preparations.

1. Install

1.1 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm

# install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]
pip install torchvision

# [optional] for MiniCPM-V-2_6
pip install timm torch==2.1.2 torchvision==0.16.2

# [optional] for Speech_Paraformer-Large
pip install funasr==1.1.14
pip install modelscope==1.20.1 torch==2.1.2 torchaudio==2.1.2

Please refer to Quickstart for more details about ipex-llm installation on Intel NPU.

1.2 Runtime Configurations

Please refer to Quickstart for environment variables setting based on your device.

2. Run Optimized Models

The examples below show how to run the optimized HuggingFace & FunASR model implementations on Intel NPU, including

2.1 Run MiniCPM-Llama3-V-2_5 & MiniCPM-V-2_6

# to run MiniCPM-Llama3-V-2_5
python minicpm-llama3-v2.5.py --save-directory <converted_model_path>

# to run MiniCPM-V-2_6
python minicpm_v_2_6.py --save-directory <converted_model_path>

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the model (e.g. openbmb/MiniCPM-Llama3-V-2_5 for MiniCPM-Llama3-V-2_5) to be downloaded, or the path to the huggingface checkpoint folder.
  • image-url-or-path IMAGE_URL_OR_PATH: argument defining the image to be infered. It is default to be 'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be "What is in this image?".
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.
  • --max-context-len MAX_CONTEXT_LEN: argument defining the maximum sequence length for both input and output tokens. It is default to be 1024.
  • --max-prompt-len MAX_PROMPT_LEN: argument defining the maximum number of tokens that the input prompt can contain. It is default to be 512.
  • --low-bit LOW_BIT: argument defining the low bit optimizations that will be applied to the model. Current available options are "sym_int4", "asym_int4" and "sym_int8", with "sym_int4" as the default.
  • --save-directory SAVE_DIRECTORY: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by REPO_ID_OR_MODEL_PATH will be loaded, otherwise the lowbit model in SAVE_DIRECTORY will be loaded.

Troubleshooting

Accuracy Tuning

If you enconter output issues when running the examples, you could try the following methods to tune the accuracy:

  1. Before running the example, consider setting an additional environment variable IPEX_LLM_NPU_QUANTIZATION_OPT=1 to enhance output quality.

  2. If you are using the default LOW_BIT value (i.e. sym_int4 optimizations), you could try to use --low-bit "asym_int4" instead to tune the output quality.

  3. You could refer to the Quickstart for more accuracy tuning strategies.

Important

Please note that to make the above methods taking effect, you must specify a new folder for SAVE_DIRECTORY. Reusing the same SAVE_DIRECTORY will load the previously saved low-bit model, and thus making the above accuracy tuning strategies ineffective.

Sample Output

Inference time: xxxx s
-------------------- Input --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
What is in this image?
-------------------- Output --------------------
The image features a young child holding and showing off a white teddy bear wearing a pink dress. The background includes some red flowers and a stone wall, suggesting an outdoor setting.

The sample input image is (which is fetched from COCO dataset):

2.2 Run Speech_Paraformer-Large

# to run Speech_Paraformer-Large
python speech_paraformer-large.py --save-directory <converted_model_path>

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the asr repo id for the model (i.e. iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch) to be downloaded, or the path to the asr checkpoint folder.
  • --low-bit LOW_BIT: argument defining the low bit optimizations that will be applied to the model. It is default to be sym_int8, sym_int4 can also be used.
  • --save-directory SAVE_DIRECTORY: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by REPO_ID_OR_MODEL_PATH will be loaded, otherwise the lowbit model in SAVE_DIRECTORY will be loaded.

Sample Output

# speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav
rtf_avg: 0.090: 100%|███████████████████████████████████| 1/1 [00:01<00:00,  1.18s/it]
[{'key': 'asr_example', 'text': '正 是 因 为 存 在 绝 对 正 义 所 以 我 们 接 受 现 实 的 相 对 正 义 但 是 不 要 因 为 现 实 的 相 对 正 义 我 们 就 认 为 这 个 世 界 没 有 正 义 因 为 如 果 当 你 认 为 这 个 世 界 没 有 正 义'}]

# https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav
rtf_avg: 0.232: 100%|███████████████████████████████████| 1/1 [00:01<00:00,  1.29s/it]
[{'key': 'asr_example_zh', 'text': '欢 迎 大 家 来 体 验 达 摩 院 推 出 的 语 音 识 别 模 型'}]