forked from tensorflow/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
598 lines (500 loc) · 21.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic sequence-to-sequence model with dynamic RNN support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import tensorflow as tf
from tensorflow.python.layers import core as layers_core
from . import model_helper
from .utils import iterator_utils
from .utils import misc_utils as utils
utils.check_tensorflow_version()
__all__ = ["BaseModel", "Model"]
class BaseModel(object):
"""Sequence-to-sequence base class.
"""
def __init__(self,
hparams,
mode,
iterator,
source_vocab_table,
target_vocab_table,
reverse_target_vocab_table=None,
scope=None,
single_cell_fn=None):
"""Create the model.
Args:
hparams: Hyperparameter configurations.
mode: TRAIN | EVAL | INFER
iterator: Dataset Iterator that feeds data.
source_vocab_table: Lookup table mapping source words to ids.
target_vocab_table: Lookup table mapping target words to ids.
reverse_target_vocab_table: Lookup table mapping ids to target words. Only
required in INFER mode. Defaults to None.
scope: scope of the model.
single_cell_fn: allow for adding customized cell. When not specified,
we default to model_helper._single_cell
"""
assert isinstance(iterator, iterator_utils.BatchedInput)
self.iterator = iterator
self.mode = mode
self.src_vocab_table = source_vocab_table
self.tgt_vocab_table = target_vocab_table
self.src_vocab_size = hparams.src_vocab_size
self.tgt_vocab_size = hparams.tgt_vocab_size
self.num_layers = hparams.num_layers
self.num_gpus = hparams.num_gpus
self.time_major = hparams.time_major
# Initializer
initializer = model_helper.get_initializer(
hparams.init_op, hparams.random_seed, hparams.init_weight)
tf.get_variable_scope().set_initializer(initializer)
# Embeddings
# TODO(ebrevdo): Only do this if the mode is TRAIN?
self.init_embeddings(hparams, scope)
self.batch_size = tf.size(self.iterator.source_sequence_length)
# Projection
with tf.variable_scope(scope or "build_network"):
with tf.variable_scope("decoder/output_projection"):
self.output_layer = layers_core.Dense(
hparams.tgt_vocab_size, use_bias=False, name="output_projection")
# To make it flexible for external code to add other cell types
# If not specified, we will later use model_helper._single_cell
self.single_cell_fn = single_cell_fn
## Train graph
res = self.build_graph(hparams, scope=scope)
if self.mode == tf.contrib.learn.ModeKeys.TRAIN:
self.train_loss = res[1]
self.word_count = tf.reduce_sum(
self.iterator.source_sequence_length) + tf.reduce_sum(
self.iterator.target_sequence_length)
elif self.mode == tf.contrib.learn.ModeKeys.EVAL:
self.eval_loss = res[1]
elif self.mode == tf.contrib.learn.ModeKeys.INFER:
self.infer_logits, _, self.final_context_state, self.sample_id = res
self.sample_words = reverse_target_vocab_table.lookup(
tf.to_int64(self.sample_id))
if self.mode != tf.contrib.learn.ModeKeys.INFER:
## Count the number of predicted words for compute ppl.
self.predict_count = tf.reduce_sum(
self.iterator.target_sequence_length)
## Learning rate
print(" start_decay_step=%d, learning_rate=%g, decay_steps %d,"
"decay_factor %g" % (hparams.start_decay_step, hparams.learning_rate,
hparams.decay_steps, hparams.decay_factor))
self.global_step = tf.Variable(0, trainable=False)
params = tf.trainable_variables()
# Gradients and SGD update operation for training the model.
# Arrage for the embedding vars to appear at the beginning.
if self.mode == tf.contrib.learn.ModeKeys.TRAIN:
if hparams.optimizer == "sgd":
self.learning_rate = tf.cond(
self.global_step < hparams.start_decay_step,
lambda: tf.constant(hparams.learning_rate),
lambda: tf.train.exponential_decay(
hparams.learning_rate,
(self.global_step - hparams.start_decay_step),
hparams.decay_steps,
hparams.decay_factor,
staircase=True),
name="learning_rate")
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
tf.summary.scalar("lr", self.learning_rate)
elif hparams.optimizer == "adam":
assert float(
hparams.learning_rate
) <= 0.001, "! High Adam learning rate %g" % hparams.learning_rate
self.learning_rate = tf.constant(hparams.learning_rate)
opt = tf.train.AdamOptimizer(self.learning_rate)
gradients = tf.gradients(
self.train_loss,
params,
colocate_gradients_with_ops=hparams.colocate_gradients_with_ops)
clipped_gradients, gradient_norm_summary = model_helper.gradient_clip(
gradients, max_gradient_norm=hparams.max_gradient_norm)
self.update = opt.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step)
# Summary
self.train_summary = tf.summary.merge([
tf.summary.scalar("lr", self.learning_rate),
tf.summary.scalar("train_loss", self.train_loss),
] + gradient_norm_summary)
if self.mode == tf.contrib.learn.ModeKeys.INFER:
self.infer_summary = self._get_infer_summary(hparams)
# Saver
self.saver = tf.train.Saver(tf.global_variables())
# Print trainable variables
utils.print_out("# Trainable variables")
for param in params:
utils.print_out(" %s, %s, %s" % (param.name, str(param.get_shape()),
param.op.device))
def init_embeddings(self, hparams, scope):
"""Init embeddings."""
self.embedding_encoder, self.embedding_decoder = (
model_helper.create_emb_for_encoder_and_decoder(
share_vocab=hparams.share_vocab,
src_vocab_size=self.src_vocab_size,
tgt_vocab_size=self.tgt_vocab_size,
src_embed_size=hparams.num_units,
tgt_embed_size=hparams.num_units,
num_partitions=hparams.num_embeddings_partitions,
scope=scope,))
def train(self, sess):
assert self.mode == tf.contrib.learn.ModeKeys.TRAIN
return sess.run([self.update,
self.train_loss,
self.predict_count,
self.train_summary,
self.global_step,
self.word_count,
self.batch_size])
def eval(self, sess):
assert self.mode == tf.contrib.learn.ModeKeys.EVAL
return sess.run([self.eval_loss,
self.predict_count,
self.batch_size])
def build_graph(self, hparams, scope=None):
"""Subclass must implement this method.
Creates a sequence-to-sequence model with dynamic RNN decoder API.
Args:
hparams: Hyperparameter configurations.
scope: VariableScope for the created subgraph; default "dynamic_seq2seq".
Returns:
A tuple of the form (logits, loss, final_context_state),
where:
logits: float32 Tensor [batch_size x num_decoder_symbols].
loss: the total loss / batch_size.
final_context_state: The final state of decoder RNN.
Raises:
ValueError: if encoder_type differs from mono and bi, or
attention_option is not (luong | scaled_luong |
bahdanau | normed_bahdanau).
"""
utils.print_out("# creating %s graph ..." % self.mode)
dtype = tf.float32
num_layers = hparams.num_layers
num_gpus = hparams.num_gpus
with tf.variable_scope(scope or "dynamic_seq2seq", dtype=dtype):
# Encoder
encoder_outputs, encoder_state = self._build_encoder(hparams)
## Decoder
logits, sample_id, final_context_state = self._build_decoder(
encoder_outputs, encoder_state, hparams)
## Loss
if self.mode != tf.contrib.learn.ModeKeys.INFER:
with tf.device(model_helper.get_device_str(num_layers - 1, num_gpus)):
loss = self._compute_loss(logits)
else:
loss = None
return logits, loss, final_context_state, sample_id
@abc.abstractmethod
def _build_encoder(self, hparams):
"""Subclass must implement this.
Build and run an RNN encoder.
Args:
hparams: Hyperparameters configurations.
Returns:
A tuple of encoder_outputs and encoder_state.
"""
pass
def _build_encoder_cell(self, hparams, num_layers, num_residual_layers,
base_gpu=0):
"""Build a multi-layer RNN cell that can be used by encoder."""
return model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=hparams.num_units,
num_layers=num_layers,
num_residual_layers=num_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=hparams.num_gpus,
mode=self.mode,
base_gpu=base_gpu,
single_cell_fn=self.single_cell_fn)
def _build_decoder(self, encoder_outputs, encoder_state, hparams):
"""Build and run a RNN decoder with a final projection layer.
Args:
encoder_outputs: The outputs of encoder for every time step.
encoder_state: The final state of the encoder.
hparams: The Hyperparameters configurations.
Returns:
A tuple of final logits and final decoder state:
logits: size [time, batch_size, vocab_size] when time_major=True.
"""
tgt_sos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.sos)),
tf.int32)
tgt_eos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.eos)),
tf.int32)
num_layers = hparams.num_layers
num_gpus = hparams.num_gpus
iterator = self.iterator
# maximum_iteration: The maximum decoding steps.
if hparams.tgt_max_len_infer:
maximum_iterations = hparams.tgt_max_len_infer
utils.print_out(" decoding maximum_iterations %d" % maximum_iterations)
else:
# TODO(thangluong): add decoding_length_factor flag
decoding_length_factor = 2.0
max_encoder_length = tf.reduce_max(iterator.source_sequence_length)
maximum_iterations = tf.to_int32(tf.round(
tf.to_float(max_encoder_length) * decoding_length_factor))
## Decoder.
with tf.variable_scope("decoder") as decoder_scope:
cell, decoder_initial_state = self._build_decoder_cell(
hparams, encoder_outputs, encoder_state,
iterator.source_sequence_length)
## Train or eval
if self.mode != tf.contrib.learn.ModeKeys.INFER:
# decoder_emp_inp: [max_time, batch_size, num_units]
target_input = iterator.target_input
if self.time_major:
target_input = tf.transpose(target_input)
decoder_emb_inp = tf.nn.embedding_lookup(
self.embedding_decoder, target_input)
# Helper
helper = tf.contrib.seq2seq.TrainingHelper(
decoder_emb_inp, iterator.target_sequence_length,
time_major=self.time_major)
# Decoder
my_decoder = tf.contrib.seq2seq.BasicDecoder(
cell,
helper,
decoder_initial_state,)
# Dynamic decoding
outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
my_decoder,
output_time_major=self.time_major,
swap_memory=True,
scope=decoder_scope)
sample_id = outputs.sample_id
# Note: there's a subtle difference here between train and inference.
# We could have set output_layer when create my_decoder
# and shared more code between train and inference.
# We chose to apply the output_layer to all timesteps for speed:
# 10% improvements for small models & 20% for larger ones.
# If memory is a concern, we should apply output_layer per timestep.
device_id = num_layers if num_layers < num_gpus else (num_layers - 1)
with tf.device(model_helper.get_device_str(device_id, num_gpus)):
logits = self.output_layer(outputs.rnn_output)
## Inference
else:
beam_width = hparams.beam_width
length_penalty_weight = hparams.length_penalty_weight
start_tokens = tf.fill([self.batch_size], tgt_sos_id)
end_token = tgt_eos_id
if beam_width > 0:
my_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=cell,
embedding=self.embedding_decoder,
start_tokens=start_tokens,
end_token=end_token,
initial_state=decoder_initial_state,
beam_width=beam_width,
output_layer=self.output_layer,
length_penalty_weight=length_penalty_weight)
else:
# Helper
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
self.embedding_decoder, start_tokens, end_token)
# Decoder
my_decoder = tf.contrib.seq2seq.BasicDecoder(
cell,
helper,
decoder_initial_state,
output_layer=self.output_layer # applied per timestep
)
# Dynamic decoding
outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
my_decoder,
maximum_iterations=maximum_iterations,
output_time_major=self.time_major,
swap_memory=True,
scope=decoder_scope)
if beam_width > 0:
logits = tf.no_op()
sample_id = outputs.predicted_ids
else:
logits = outputs.rnn_output
sample_id = outputs.sample_id
return logits, sample_id, final_context_state
def get_max_time(self, tensor):
time_axis = 0 if self.time_major else 1
return tensor.shape[time_axis].value or tf.shape(tensor)[time_axis]
@abc.abstractmethod
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Subclass must implement this.
Args:
hparams: Hyperparameters configurations.
encoder_outputs: The outputs of encoder for every time step.
encoder_state: The final state of the encoder.
source_sequence_length: sequence length of encoder_outputs.
Returns:
A tuple of a multi-layer RNN cell used by decoder
and the intial state of the decoder RNN.
"""
pass
def _compute_loss(self, logits):
"""Compute optimization loss."""
target_output = self.iterator.target_output
if self.time_major:
target_output = tf.transpose(target_output)
max_time = self.get_max_time(target_output)
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=target_output, logits=logits)
target_weights = tf.sequence_mask(
self.iterator.target_sequence_length, max_time, dtype=logits.dtype)
if self.time_major:
target_weights = tf.transpose(target_weights)
loss = tf.reduce_sum(
crossent * target_weights) / tf.to_float(self.batch_size)
return loss
def _get_infer_summary(self, hparams):
return tf.no_op()
def infer(self, sess):
assert self.mode == tf.contrib.learn.ModeKeys.INFER
return sess.run([
self.infer_logits, self.infer_summary, self.sample_id, self.sample_words
])
def decode(self, sess):
"""Decode a batch.
Args:
sess: tensorflow session to use.
Returns:
A tuple consiting of outputs, infer_summary.
outputs: of size [batch_size, time]
"""
_, infer_summary, _, sample_words = self.infer(sess)
# make sure outputs is of shape [batch_size, time]
if self.time_major:
sample_words = sample_words.transpose()
return sample_words, infer_summary
class Model(BaseModel):
"""Sequence-to-sequence dynamic model.
This class implements a multi-layer recurrent neural network as encoder,
and a multi-layer recurrent neural network decoder.
"""
def _build_encoder(self, hparams):
"""Build an encoder."""
num_layers = hparams.num_layers
num_residual_layers = hparams.num_residual_layers
iterator = self.iterator
source = iterator.source
if self.time_major:
source = tf.transpose(source)
with tf.variable_scope("encoder") as scope:
dtype = scope.dtype
# Look up embedding, emp_inp: [max_time, batch_size, num_units]
encoder_emb_inp = tf.nn.embedding_lookup(
self.embedding_encoder, source)
# Encoder_outpus: [max_time, batch_size, num_units]
if hparams.encoder_type == "uni":
utils.print_out(" num_layers = %d, num_residual_layers=%d" %
(num_layers, num_residual_layers))
cell = self._build_encoder_cell(
hparams, num_layers, num_residual_layers)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell,
encoder_emb_inp,
dtype=dtype,
sequence_length=iterator.source_sequence_length,
time_major=self.time_major)
elif hparams.encoder_type == "bi":
num_bi_layers = int(num_layers / 2)
num_bi_residual_layers = int(num_residual_layers / 2)
utils.print_out(" num_bi_layers = %d, num_bi_residual_layers=%d" %
(num_bi_layers, num_bi_residual_layers))
encoder_outputs, bi_encoder_state = (
self._build_bidirectional_rnn(
inputs=encoder_emb_inp,
sequence_length=iterator.source_sequence_length,
dtype=dtype,
hparams=hparams,
num_bi_layers=num_bi_layers,
num_bi_residual_layers=num_bi_residual_layers))
if num_bi_layers == 1:
encoder_state = bi_encoder_state
else:
# alternatively concat forward and backward states
encoder_state = []
for layer_id in range(num_bi_layers):
encoder_state.append(bi_encoder_state[0][layer_id]) # forward
encoder_state.append(bi_encoder_state[1][layer_id]) # backward
encoder_state = tuple(encoder_state)
else:
raise ValueError("Unknown encoder_type %s" % hparams.encoder_type)
return encoder_outputs, encoder_state
def _build_bidirectional_rnn(self, inputs, sequence_length,
dtype, hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=0):
"""Create and call biddirectional RNN cells.
Args:
num_residual_layers: Number of residual layers from top to bottom. For
example, if `num_bi_layers=4` and `num_residual_layers=2`, the last 2 RNN
layers in each RNN cell will be wrapped with `ResidualWrapper`.
base_gpu: The gpu device id to use for the first forward RNN layer. The
i-th forward RNN layer will use `(base_gpu + i) % num_gpus` as its
device id. The `base_gpu` for backward RNN cell is `(base_gpu +
num_bi_layers)`.
Returns:
The concatenated bidirectional output and the bidirectional RNN cell"s
state.
"""
# Construct forward and backward cells
fw_cell = self._build_encoder_cell(hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=base_gpu)
bw_cell = self._build_encoder_cell(hparams,
num_bi_layers,
num_bi_residual_layers,
base_gpu=(base_gpu + num_bi_layers))
bi_outputs, bi_state = tf.nn.bidirectional_dynamic_rnn(
fw_cell,
bw_cell,
inputs,
dtype=dtype,
sequence_length=sequence_length,
time_major=self.time_major)
return tf.concat(bi_outputs, -1), bi_state
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Build an RNN cell that can be used by decoder."""
# We only make use of encoder_outputs in attention-based models
if hparams.attention:
raise ValueError("BasicModel doesn't support attention.")
num_layers = hparams.num_layers
num_residual_layers = hparams.num_residual_layers
cell = model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=hparams.num_units,
num_layers=num_layers,
num_residual_layers=num_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=hparams.num_gpus,
mode=self.mode,
single_cell_fn=self.single_cell_fn)
# For beam search, we need to replicate encoder infos beam_width times
if self.mode == tf.contrib.learn.ModeKeys.INFER and hparams.beam_width > 0:
decoder_initial_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=hparams.beam_width)
else:
decoder_initial_state = encoder_state
return cell, decoder_initial_state