-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel1-2.py
executable file
·152 lines (132 loc) · 5.25 KB
/
model1-2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#coding=gbk
import zipfile
import cStringIO as sio
import scipy.misc as misc
import numpy as np
def s2o(s):
return sio.StringIO(s)
dataset = zipfile.ZipFile('glasses.zip','r')
noglasslist = [i for i in dataset.namelist() if i.startswith('alignedNoneGlasses') and i.endswith('bmp')]
glasslist = [i for i in dataset.namelist() if i.startswith('alignedGlasses') and i.endswith('bmp')]
def liner():
"提取眼睛行(带眼镜)"
#import os
#try: os.mkdir('glassline')
#except: pass
import PIL.Image
glassmodel = np.empty((len(glasslist),(70-25)*(90-0)),np.uint8)
idx = 0
for i in glasslist:
img = PIL.Image.open(s2o(dataset.read(i)))
img=img.crop((0,25,90,70))
glassmodel[idx] = misc.fromimage(img).flatten()
#img.save('glassline\\'+i.split('/')[-1])
print i
idx+=1
print glassmodel.shape
np.save('glassline.npy',glassmodel)
nglassmodel = np.empty((len(noglasslist),(70-25)*(90-0)),np.uint8)
idx = 0
for i in noglasslist:
img = PIL.Image.open(s2o(dataset.read(i)))
img=img.crop((0,25,90,70))
nglassmodel[idx] = misc.fromimage(img).flatten()
#img.save('glassline\\'+i.split('/')[-1])
print i
idx+=1
print nglassmodel.shape
np.save('nglassline.npy',nglassmodel)
def sccodedirect():
"得到不带眼镜的RPCA结果"
nglassmodel = np.load('nglassline.npy').astype('f')
from sklearn.decomposition import SparsePCA
learning = SparsePCA(500,verbose=True)
learning.fit(nglassmodel)
import cPickle
cPickle.dump(learning,file('sparsepcadirect','wb'),-1)
def scdecomp():
"对带眼镜照片进行分解,得到还原表示以及眼镜区域"
glassmodel = np.load('glassline.npy').astype('f')
import cPickle
sparsedirect = cPickle.load(file('sparsepcadirect','rb'))
#sparsedirect.set_params(transform_algorithm='lasso_lars')
dout = sparsedirect.transform(glassmodel)
drec = dout.dot(sparsedirect.components_)
np.save('glassdecomppca.npy',drec)
np.save('glassdiffpca.npy',glassmodel - drec)
def scvisdecomp():
"可视化结果"
from layerbase import DrawPatch
import cPickle
sparsedirect = cPickle.load(file('sparsepcadirect','rb'))
drec = sparsedirect.components_.reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('dict.jpg')
drec = np.load('glassline.npy').astype('f').reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('src.jpg')
drec = np.load('glassdecomppca.npy').reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('decomppca.jpg')
drec = np.abs(np.load('glassdiffpca.npy')).reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('diffpca.jpg')
def cutratio(ratio,imgid,sparsedirect=None, glassmodel=None):
"使用卡阈值标记损坏区域的方法迭代SparseCoding去除眼镜"
if sparsedirect==None:
import cPickle
sparsedirect = cPickle.load(file('sparsepcadirect','rb'))
sparsedirect.set_params(transform_algorithm='lasso_lars')
modelval = sparsedirect.components_
if glassmodel==None:
glassmodel = np.load('glassline.npy').astype('f')
sample = glassmodel[imgid:imgid+1]
#初始还原损坏区域
rec = sparsedirect.transform(sample).dot(modelval)
diff = np.abs(sample - rec)[0]
diffmax = np.max(diff)
maskarea = np.where(diff>diffmax*ratio,0,1)
itx = 1
while True:
newmodel = np.copy(modelval)
sparsedirect.components_ = newmodel * maskarea[np.newaxis,:]
newsample = np.copy(sample)
newsample = newsample * maskarea[np.newaxis,:]
rec = sparsedirect.transform(newsample).dot(modelval)
diff = np.abs(sample - rec)[0]
diffmax = np.max(diff)
newmaskarea = np.where(diff>diffmax*ratio,0,1)
maskdiff = np.sum(np.abs(maskarea - newmaskarea))
print "ITERATION",itx,"DIFF",maskdiff
itx += 1
maskarea = newmaskarea
if maskdiff == 0:
print "Converge"
break
sparsedirect.components_ = modelval
return rec, diff, maskarea
def cutratio_all(ratio):
import cPickle
sparsedirect = cPickle.load(file('sparsepcadirect','rb'))
sparsedirect.set_params(transform_algorithm='lasso_lars')
glassmodel = np.load('glassline.npy').astype('f')
glassmodel = glassmodel[:200]
recall = np.empty_like(glassmodel)
diffall = np.empty_like(glassmodel)
maskall = np.empty_like(glassmodel)
for idx in range(glassmodel.shape[0]):
print idx,glassmodel.shape[0]
recall[idx],diffall[idx],maskall[idx] = cutratio(ratio, idx, sparsedirect, glassmodel)
np.save('cut_rec.npy',recall)
np.save('cut_diff.npy',diffall)
np.save('cut_mask.npy',maskall)
from layerbase import DrawPatch
drec = recall.reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('irec.jpg')
drec = diffall.reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('idiff.jpg')
drec = maskall.reshape((-1,1,70-25,90-0))
misc.toimage(DrawPatch(drec)).save('imask.jpg')
if __name__=="__main__":
print "Make model 1"
#liner()
sccodedirect()
scdecomp()
scvisdecomp()
#cutratio_all(0.3)