From 1b3e10251fbb84873d8d40244fd8beb959beefbd Mon Sep 17 00:00:00 2001 From: Zhao Wu Date: Mon, 19 Aug 2019 14:05:41 +0800 Subject: [PATCH] [CoreML] Solve CoreML frontend issue of image scaler and padding so that Mobilenet mlmodel can work correctly. (#3800) --- python/tvm/relay/frontend/common.py | 10 +- python/tvm/relay/frontend/coreml.py | 129 ++++++++++++------- tests/python/frontend/coreml/test_forward.py | 74 ++++++++++- tutorials/frontend/from_coreml.py | 12 +- 4 files changed, 174 insertions(+), 51 deletions(-) diff --git a/python/tvm/relay/frontend/common.py b/python/tvm/relay/frontend/common.py index 3dab51ce1cfb..4da3a528fc51 100644 --- a/python/tvm/relay/frontend/common.py +++ b/python/tvm/relay/frontend/common.py @@ -273,9 +273,15 @@ def new_const(self, value, shape=None, dtype="float32"): def get_expr(self, name): return self.exprs[name] - def set_expr(self, name, expr): + def set_expr(self, name, expr, force_override=False): assert isinstance(expr, _expr.Expr) - if name not in self.exprs: + # if name exists, we should override the value + # otherwise, we can not get like x = func(x) work. + # One example is CoreML preprocess, which will override + # the same name of input. + # However, according to git log, Find keras frontend depends + # on this property, so we add one force_override to control it. + if name not in self.exprs or force_override: self.exprs[name] = expr def has_expr(self, name): diff --git a/python/tvm/relay/frontend/coreml.py b/python/tvm/relay/frontend/coreml.py index 2f2b75615756..ed7e45be8ade 100644 --- a/python/tvm/relay/frontend/coreml.py +++ b/python/tvm/relay/frontend/coreml.py @@ -17,6 +17,7 @@ # pylint: disable=invalid-name, import-self, unused-argument, unused-variable, inconsistent-return-statements """CoreML frontend.""" from __future__ import absolute_import as _abs +import math import numpy as np import tvm from .. import analysis @@ -26,11 +27,13 @@ from ... import nd as _nd from ..._ffi import base as _base from .common import ExprTable +from .common import infer_shape as _infer_shape __all__ = ['from_coreml'] def _NeuralNetworkImageScaler(op, inexpr, etab): + # TODO: we need to support more colorspace, such as rgb. # this changes the symbol biases = np.array([op.blueBias, op.greenBias, op.redBias]).reshape([3, 1, 1]) bias = etab.new_const(biases) @@ -47,11 +50,16 @@ def _NeuralNetworkMeanImage(op, inexpr, etab): def _ConvolutionLayerParams(op, inexpr, etab): """Convolution layer params.""" - weights = etab.new_const(np.array(list(op.weights.floatValue)).reshape( - tuple([op.outputChannels, op.kernelChannels] + list(op.kernelSize)))) + if op.isDeconvolution: + weights = etab.new_const(np.array(list(op.weights.floatValue)).reshape( + tuple([op.kernelChannels, op.outputChannels] + list(op.kernelSize)))) + else: + weights = etab.new_const(np.array(list(op.weights.floatValue)).reshape( + tuple([op.outputChannels, op.kernelChannels] + list(op.kernelSize)))) dilation = list(op.dilationFactor) if not dilation: dilation = [1, 1] + N, C, H, W = _infer_shape(inexpr) params = {'channels':op.outputChannels, 'kernel_size':list(op.kernelSize), 'strides':list(op.stride), @@ -60,30 +68,31 @@ def _ConvolutionLayerParams(op, inexpr, etab): if op.WhichOneof('ConvolutionPaddingType') == 'valid': valid = op.valid - padding = [b.startEdgeSize for b in valid.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in valid.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j, "Asymmetry padding not supported" - if padding: - params['padding'] = padding + if valid.paddingAmounts.borderAmounts: + assert len(valid.paddingAmounts.borderAmounts) == 2 + pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize + pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize + pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize + pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize + inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0), + (0, 0), + (pad_t, pad_b), + (pad_l, pad_r))) elif op.WhichOneof('ConvolutionPaddingType') == 'same': + assert op.same.asymmetryMode == 0, "Only support BOTTOM_RIGHT_HEAVY mode, " \ + "which is used by tf/caffe and so on" kernel = params['kernel_size'] - pad_h = kernel[0] - 1 - pad_w = kernel[1] - 1 - pad_t = pad_h // 2 - pad_l = pad_w // 2 - pad_b = pad_h - pad_t - pad_r = pad_w - pad_l - assert pad_t == pad_r and pad_l == pad_b, "Asymmetry padding not supported" - params['padding'] = [pad_t, pad_l] + strides = params['strides'] + pad_t, pad_b = get_pad_value(H, kernel[0], strides[0]) + pad_l, pad_r = get_pad_value(W, kernel[1], strides[1]) + inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0), + (0, 0), + (pad_t, pad_b), + (pad_l, pad_r))) + else: raise NotImplementedError("Valid/Same convolution padding implemented") - # consume padding layer - if etab.in_padding: - params['padding'] = [sum(x) for x in zip(params.get('padding', [0, 0]), etab.paddings)] - etab.clear_padding() - if op.isDeconvolution: ret = _op.nn.conv2d_transpose(data=inexpr, weight=weights, **params) else: @@ -193,11 +202,13 @@ def _PoolingLayerParams(op, inexpr, etab): if op.WhichOneof('PoolingPaddingType') == 'valid': valid = op.valid - padding = [b.startEdgeSize for b in valid.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in valid.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j - params['padding'] = padding + if valid.paddingAmounts.borderAmounts: + assert len(valid.paddingAmounts.borderAmounts) == 2 + pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize + pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize + pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize + pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize + params['padding'] = [pad_t, pad_l, pad_b, pad_r] elif op.WhichOneof('PoolingPaddingType') == 'includeLastPixel': # I don't know if this is correct valid = op.includeLastPixel @@ -209,12 +220,6 @@ def _PoolingLayerParams(op, inexpr, etab): op_name = op.WhichOneof('PoolingPaddingType') raise tvm.error.OpAttributeUnImplemented(msg.format(op_name)) - # consume padding layer - if etab.in_padding: - params['padding'] = [sum(x) for x in zip( - params.get('padding', [0, 0]), etab.paddings)] - etab.clear_padding() - if op.type == 0: return _op.nn.max_pool2d(inexpr, **params) if op.type == 1: @@ -276,21 +281,24 @@ def _FlattenLayerParams(op, inexpr, etab): def _PaddingLayerParams(op, inexpr, etab): - """Hacking for padding layer params.""" + """Padding layer params.""" if op.WhichOneof('PaddingType') == 'constant': constant = op.constant if constant.value != 0: raise tvm.error.OpAttributeUnImplemented( '{} is not supported in operator Padding.'.format(constant.value)) - padding = [b.startEdgeSize for b in op.paddingAmounts.borderAmounts] - padding2 = [b.endEdgeSize for b in op.paddingAmounts.borderAmounts] - for i, j in zip(padding, padding2): - assert i == j - etab.set_padding(padding) + pad_t = op.paddingAmounts.borderAmounts[0].startEdgeSize + pad_l = op.paddingAmounts.borderAmounts[1].startEdgeSize + pad_b = op.paddingAmounts.borderAmounts[0].endEdgeSize + pad_r = op.paddingAmounts.borderAmounts[1].endEdgeSize + return _op.nn.pad(data=inexpr, pad_width=((0, 0), + (0, 0), + (pad_t, pad_b), + (pad_l, pad_r))) + else: raise tvm.error.OpNotImplemented( 'Non-constant padding is not supported in frontend CoreML.') - return inexpr def _PermuteLayerParams(op, inexpr, etab): @@ -372,6 +380,32 @@ def _MinLayerParams(op, inexpr, etab): 'MinLayerParams': _MinLayerParams, } +# SAME padding: https://www.tensorflow.org/api_guides/python/nn +def get_pad_value(data, kernel, stride): + """Get the pad tuple of value for SAME padding + + Parameters + ---------- + data: + 1D input data + + kernel: + 1D input kernel + + stride: + 1D input stride + + Returns + ------- + pad tuple of value + """ + + out = int(math.ceil(float(data) / float(stride))) + pad = max(0, (out - 1) * stride + kernel - data) + pad_before = pad // 2 + pad_after = pad - pad_before + return pad_before, pad_after + def coreml_op_to_relay(op, inname, outname, etab): """Convert coreml layer to a Relay expression and update the expression table. @@ -399,9 +433,7 @@ def coreml_op_to_relay(op, inname, outname, etab): insym = [etab.get_expr(i) for i in inname] ret = _convert_map[classname](op, insym, etab) if outname: - etab.set_expr(outname, ret) - if classname != 'PaddingLayerParams': - assert not etab.in_padding, "Previous padding not consumed by conv/pool" + etab.set_expr(outname, ret, force_override=True) def from_coreml(model, shape=None): @@ -442,10 +474,19 @@ def from_coreml(model, shape=None): for pp in cc.preprocessing: whichpp = pp.WhichOneof('preprocessor') ppmethod = getattr(pp, whichpp) - # the NeuralNetworkImageScalar doesn't seem to have a featureName? if whichpp == 'scaler': + # Be careful we maybe only preprocess one input when we have multi inputs + # which is stored in pp.featureName. See unit testing verify_image_scaler + # in test_forward.py for CoreML. for i in spec.description.input: - coreml_op_to_relay(ppmethod, i.name, i.name, etab) + # we have multi inputs + if len(spec.description.input) > 1: + assert pp.featureName != '' + if i.name == pp.featureName: + coreml_op_to_relay(ppmethod, i.name, i.name, etab) + else: + assert pp.featureName == '' + coreml_op_to_relay(ppmethod, i.name, i.name, etab) else: coreml_op_to_relay(ppmethod, pp.featureName, pp.featureName, etab) diff --git a/tests/python/frontend/coreml/test_forward.py b/tests/python/frontend/coreml/test_forward.py index 59d4dd6f29b7..a02341486877 100644 --- a/tests/python/frontend/coreml/test_forward.py +++ b/tests/python/frontend/coreml/test_forward.py @@ -25,6 +25,7 @@ import topi.testing from tvm import relay from tvm.relay.testing.config import ctx_list +from topi.testing import conv2d_nchw_python import coremltools as cm import model_zoo @@ -95,7 +96,10 @@ def run_tvm_graph(coreml_model, target, ctx, input_data, input_name, output_shap tvm_output_list.append(tvm_output.asnumpy()) return tvm_output_list else: - tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) + if not output_shape: + tvm_output = m.get_output(0) + else: + tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) return tvm_output.asnumpy() def verify_AddLayerParams(input_dim, alpha=2): @@ -330,6 +334,72 @@ def test_forward_min(): verify_min((1, 3, 20, 20)) verify_min((20, 20)) +def verify_image_scaler(input_dim, blue_bias=0.0, green_bias=0.0, red_bias=0.0, image_scale=1.0): + dtype = 'float32' + a_np = np.random.uniform(size=input_dim).astype(dtype) + # make sure it is valid image format CHW. + assert len(a_np.shape) == 3 and a_np.shape[0] == 3 + b_np = np.zeros(a_np.shape, dtype=dtype) + b_np[0, :, :] = image_scale * a_np[0, :, :] + blue_bias + b_np[1, :, :] = image_scale * a_np[1, :, :] + green_bias + b_np[2, :, :] = image_scale * a_np[2, :, :] + red_bias + b_np = np.add(a_np, b_np) + inputs = [('input1', datatypes.Array(*input_dim)), + ('input2', datatypes.Array(*input_dim))] + output = [('output', datatypes.Array(*b_np.shape))] + builder = NeuralNetworkBuilder(inputs, output) + builder.set_pre_processing_parameters(image_input_names=['input1'], + is_bgr=True, + blue_bias=blue_bias, + green_bias=green_bias, + red_bias=red_bias, + image_scale=image_scale) + # add one add layer to make CoreML model format valid + # add layer has been tested before. + builder.add_elementwise(name='add', input_names=['input1', 'input2'], + output_name='output', alpha=0, mode='ADD') + model = cm.models.MLModel(builder.spec) + for target, ctx in ctx_list(): + out = run_tvm_graph(model, target, ctx, [a_np, a_np], + ['input1', 'input2'], b_np.shape, dtype) + tvm.testing.assert_allclose(out, b_np, rtol=1e-5) + +def test_forward_image_scaler(): + verify_image_scaler((3, 224, 224), image_scale=0.17) + verify_image_scaler((3, 224, 224), + blue_bias=-1.7669800519943237, + green_bias=-1.985260009765625, + red_bias=-2.102560043334961, + image_scale=0.379) + +def verify_convolution(input_dim, filter, padding): + dtype = 'float32' + N, C, H, W = input_dim + OC, _, KH, KW = filter + a_np = np.random.uniform(size=input_dim).astype(dtype) + w_np = np.random.uniform(size=(OC, C, KH, KW)).astype(dtype) + w_np_cm = np.transpose(w_np, axes=(2, 3, 1, 0)) + b_np = conv2d_nchw_python(a_np, w_np, [1, 1], padding) + inputs = [('input1', datatypes.Array(C, H, W))] + output = [('output', datatypes.Array(*b_np.shape))] + builder = NeuralNetworkBuilder(inputs, output) + builder.add_convolution(name='conv', kernel_channels=3, output_channels=OC, + height=KH, width=KW, stride_height=1, stride_width=1, + border_mode=padding.lower(), groups=1, + W=w_np_cm, b=None, has_bias=False, + is_deconv=False, + input_name='input1', + output_name='output') + model = cm.models.MLModel(builder.spec) + for target, ctx in ctx_list(): + out = run_tvm_graph(model, target, ctx, [a_np], + ['input1'], output_shape=None) + tvm.testing.assert_allclose(out, b_np, rtol=1e-5) + +def test_forward_convolution(): + verify_convolution((1, 3, 224, 224), filter=(32, 3, 3, 3), padding='VALID') + verify_convolution((1, 3, 224, 224), filter=(32, 3, 3, 3), padding='SAME') + if __name__ == '__main__': test_forward_AddLayerParams() test_forward_ConcatLayerParams() @@ -342,3 +412,5 @@ def test_forward_min(): test_forward_min() test_mobilenet_checkonly() test_resnet50_checkonly() + test_forward_image_scaler() + test_forward_convolution() diff --git a/tutorials/frontend/from_coreml.py b/tutorials/frontend/from_coreml.py index 1bb7cbd885ab..2f70353501b8 100644 --- a/tutorials/frontend/from_coreml.py +++ b/tutorials/frontend/from_coreml.py @@ -18,7 +18,8 @@ Compile CoreML Models ===================== **Author**: `Joshua Z. Zhang `_, \ - `Kazutaka Morita `_ + `Kazutaka Morita `_, \ + `Zhao Wu `_ This article is an introductory tutorial to deploy CoreML models with Relay. @@ -58,13 +59,15 @@ img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' img_path = download_testdata(img_url, 'cat.png', module='data') img = Image.open(img_path).resize((224, 224)) -x = np.transpose(img, (2, 0, 1))[np.newaxis, :] +# Mobilenet.mlmodel's input is BGR format +img_bgr = np.array(img)[:,:,::-1] +x = np.transpose(img_bgr, (2, 0, 1))[np.newaxis, :] ###################################################################### # Compile the model on Relay # --------------------------- # We should be familiar with the process right now. -target = 'cuda' +target = 'llvm' shape_dict = {'image': x.shape} # Parse CoreML model and convert into Relay computation graph @@ -80,7 +83,7 @@ # ------------------- # The process is no different from other example from tvm.contrib import graph_runtime -ctx = tvm.gpu(0) +ctx = tvm.cpu(0) dtype = 'float32' m = graph_runtime.create(graph, lib, ctx) # set inputs @@ -104,4 +107,5 @@ synset_path = download_testdata(synset_url, synset_name, module='data') with open(synset_path) as f: synset = eval(f.read()) +# You should see the following result: Top-1 id 282 class name tiger cat print('Top-1 id', top1, 'class name', synset[top1])