-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
263 lines (220 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import random
import time
import cv2
import numpy as np
import logging
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.multiprocessing as mp
import torch.distributed as dist
from tensorboardX import SummaryWriter
from model.PartNet import PFENet
from util import dataset
from util import transform, config
from util.util import AverageMeter, poly_learning_rate, intersectionAndUnionGPU
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
def get_parser():
parser = argparse.ArgumentParser(description='PyTorch Semantic Segmentation')
parser.add_argument('--config', type=str, default='config/ade20k/ade20k_pspnet50.yaml', help='config file')
parser.add_argument('opts', help='see config/ade20k/ade20k_pspnet50.yaml for all options', default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
if args.opts is not None:
cfg = config.merge_cfg_from_list(cfg, args.opts)
return cfg
def get_logger():
logger_name = "main-logger"
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s"
handler.setFormatter(logging.Formatter(fmt))
logger.addHandler(handler)
return logger
def worker_init_fn(worker_id):
random.seed(args.manual_seed + worker_id)
def main_process():
return not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % args.ngpus_per_node == 0)
def main():
args = get_parser()
assert args.classes > 1
assert args.zoom_factor in [1, 2, 4, 8]
assert (args.train_h - 1) % 8 == 0 and (args.train_w - 1) % 8 == 0
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.train_gpu)
if args.manual_seed is not None:
cudnn.benchmark = False
cudnn.deterministic = True
torch.cuda.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
random.seed(args.manual_seed)
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
args.ngpus_per_node = len(args.train_gpu)
if len(args.train_gpu) == 1:
args.sync_bn = False
args.distributed = False
args.multiprocessing_distributed = False
if args.multiprocessing_distributed:
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args.ngpus_per_node, args))
else:
main_worker(args.train_gpu, args.ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, argss):
global args
args = argss
BatchNorm = nn.BatchNorm2d
criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label)
model = PFENet(layers=args.layers, classes=2, zoom_factor=8, \
criterion=nn.CrossEntropyLoss(ignore_index=255), BatchNorm=BatchNorm, \
pretrained=True, shot=args.shot, ppm_scales=args.ppm_scales, vgg=args.vgg)
global logger, writer
logger = get_logger()
writer = SummaryWriter(args.save_path)
logger.info("=> creating model ...")
logger.info("Classes: {}".format(args.classes))
logger.info(model)
print(args)
model = torch.nn.DataParallel(model.cuda())
if args.weight:
if os.path.isfile(args.weight):
logger.info("=> loading weight '{}'".format(args.weight))
checkpoint = torch.load(args.weight)
model.load_state_dict(checkpoint['state_dict'])
logger.info("=> loaded weight '{}'".format(args.weight))
else:
logger.info("=> no weight found at '{}'".format(args.weight))
value_scale = 255
mean = [0.485, 0.456, 0.406]
mean = [item * value_scale for item in mean]
std = [0.229, 0.224, 0.225]
std = [item * value_scale for item in std]
assert args.split in [0, 1, 2, 3, 999]
if args.resized_val:
val_transform = transform.Compose([
transform.Resize(size=args.val_size),
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)])
else:
val_transform = transform.Compose([
transform.test_Resize(size=args.val_size),
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)])
val_data = dataset.SemData(split=args.split, shot=args.shot, data_root=args.data_root, \
data_list=args.val_list, transform=val_transform, mode='val', \
use_coco=args.use_coco, use_split_coco=args.use_split_coco)
val_sampler = None
val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=True, sampler=val_sampler)
loss_val, mIoU_val, mAcc_val, allAcc_val, class_miou = validate(val_loader, model, criterion)
def validate(val_loader, model, criterion):
if main_process():
logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
model_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
if args.use_coco:
split_gap = 20
else:
split_gap = 5
class_intersection_meter = [0]*split_gap
class_union_meter = [0]*split_gap
if args.manual_seed is not None and args.fix_random_seed_val:
torch.cuda.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
random.seed(args.manual_seed)
model.eval()
end = time.time()
if args.split != 999:
if args.use_coco:
test_num = 20000
else:
test_num = 5000
else:
test_num = len(val_loader)
assert test_num % args.batch_size_val == 0
iter_num = 0
total_time = 0
for e in range(20):
for i, (input, target, s_input, s_mask, subcls, ori_label) in enumerate(val_loader):
if (iter_num-1) * args.batch_size_val >= test_num:
break
iter_num += 1
data_time.update(time.time() - end)
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
ori_label = ori_label.cuda(non_blocking=True)
start_time = time.time()
output, _, _ = model(s_x=s_input, s_y=s_mask, x=input, y=target)
total_time = total_time + 1
model_time.update(time.time() - start_time)
if args.ori_resize:
longerside = max(ori_label.size(1), ori_label.size(2))
backmask = torch.ones(ori_label.size(0), longerside, longerside).cuda()*255
backmask[0, :ori_label.size(1), :ori_label.size(2)] = ori_label
target = backmask.clone().long()
output = F.interpolate(output, size=target.size()[1:], mode='bilinear', align_corners=True)
loss = criterion(output, target)
n = input.size(0)
loss = torch.mean(loss)
output = output.max(1)[1]
intersection, union, new_target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
intersection, union, target, new_target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy(), new_target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(new_target)
subcls = subcls[0].cpu().numpy()[0]
class_intersection_meter[(subcls-1)%split_gap] += intersection[1]
class_union_meter[(subcls-1)%split_gap] += union[1]
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
loss_meter.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if ((i + 1) % (test_num/100) == 0) and main_process():
logger.info('Test: [{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f}) '
'Accuracy {accuracy:.4f}.'.format(iter_num* args.batch_size_val, test_num,
data_time=data_time,
batch_time=batch_time,
loss_meter=loss_meter,
accuracy=accuracy))
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
class_iou_class = []
class_miou = 0
for i in range(len(class_intersection_meter)):
class_iou = class_intersection_meter[i]/(class_union_meter[i]+ 1e-10)
class_iou_class.append(class_iou)
class_miou += class_iou
class_miou = class_miou*1.0 / len(class_intersection_meter)
logger.info('meanIoU---Val result: mIoU {:.4f}.'.format(class_miou))
for i in range(split_gap):
logger.info('Class_{} Result: iou {:.4f}.'.format(i+1, class_iou_class[i]))
if main_process():
logger.info('FBIoU---Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(args.classes):
logger.info('Class_{} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, iou_class[i], accuracy_class[i]))
logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<')
print('avg inference time: {:.4f}, count: {}'.format(model_time.avg, test_num))
return loss_meter.avg, mIoU, mAcc, allAcc, class_miou
if __name__ == '__main__':
main()