-
Notifications
You must be signed in to change notification settings - Fork 2
/
mnist_replica.py
354 lines (298 loc) · 13.6 KB
/
mnist_replica.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Distributed MNIST training and validation, with model replicas.
A simple softmax model with one hidden layer is defined. The parameters
(weights and biases) are located on two parameter servers (ps), while the
ops are defined on a worker node. The TF sessions also run on the worker
node.
Multiple invocations of this script can be done in parallel, with different
values for --task_index. There should be exactly one invocation with
--task_index, which will create a master session that carries out variable
initialization. The other, non-master, sessions will wait for the master
session to finish the initialization before proceeding to the training stage.
The coordination between the multiple worker invocations occurs due to
the definition of the parameters on the same ps devices. The parameter updates
from one worker is visible to all other workers. As such, the workers can
perform forward computation and gradient calculation in parallel, which
should lead to increased training speed for the simple model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import sys
import tempfile
import time
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
flags = tf.app.flags
flags.DEFINE_string("data_dir", "/tmp/mnist-data",
"Directory for storing mnist data")
flags.DEFINE_string("log_dir", "/tmp/mnist-log",
"Directory for storing traing result data")
flags.DEFINE_boolean("log_device_placement", True,
"Enable log of training device placement information")
flags.DEFINE_boolean("download_only", False,
"Only perform downloading of data; Do not proceed to "
"session preparation, model definition or training")
flags.DEFINE_integer("task_index", None,
"Worker task index, should be >= 0. task_index=0 is "
"the master worker task the performs the variable "
"initialization ")
flags.DEFINE_integer("num_gpus", 1,
"Total number of gpus for each machine."
"If you don't use GPU, please set it to '0'")
flags.DEFINE_integer("replicas_to_aggregate", None,
"Number of replicas to aggregate before parameter update"
"is applied (For sync_replicas mode only; default: "
"num_workers)")
flags.DEFINE_integer("hidden_units", 100,
"Number of units in the hidden layer of the NN")
flags.DEFINE_integer("train_steps", 1000,
"Number of (global) training steps to perform")
flags.DEFINE_integer("batch_size", 100, "Training batch size")
flags.DEFINE_float("learning_rate", 0.01, "Learning rate")
flags.DEFINE_boolean("sync_replicas", False,
"Use the sync_replicas (synchronized replicas) mode, "
"wherein the parameter updates from workers are aggregated "
"before applied to avoid stale gradients")
flags.DEFINE_boolean(
"existing_servers", False, "Whether servers already exists. If True, "
"will use the worker hosts via their GRPC URLs (one client process "
"per worker host). Otherwise, will create an in-process TensorFlow "
"server.")
flags.DEFINE_string("ps_hosts","localhost:2222",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("job_name", None,"job name: worker or ps")
FLAGS = flags.FLAGS
IMAGE_PIXELS = 28
def main(unused_argv):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
if FLAGS.download_only:
sys.exit(0)
if FLAGS.job_name is None or FLAGS.job_name == "":
raise ValueError("Must specify an explicit `job_name`")
if FLAGS.task_index is None or FLAGS.task_index =="":
raise ValueError("Must specify an explicit `task_index`")
print("job name = %s" % FLAGS.job_name)
print("task index = %d" % FLAGS.task_index)
#Construct the cluster and start the server
ps_spec = FLAGS.ps_hosts.split(",")
worker_spec = FLAGS.worker_hosts.split(",")
# Get the number of workers.
num_workers = len(worker_spec)
cluster = tf.train.ClusterSpec({
"ps": ps_spec,
"worker": worker_spec})
if not FLAGS.existing_servers:
# Not using existing servers. Create an in-process server.
server = tf.train.Server(
cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
is_chief = (FLAGS.task_index == 0)
if FLAGS.num_gpus > 0:
if FLAGS.num_gpus < num_workers:
raise ValueError("number of gpus is less than number of workers")
# Avoid gpu allocation conflict: now allocate task_num -> #gpu
# for each worker in the corresponding machine
gpu = (FLAGS.task_index % FLAGS.num_gpus)
worker_device = "/job:worker/task:%d/gpu:%d" % (FLAGS.task_index, gpu)
elif FLAGS.num_gpus == 0:
# Just allocate the CPU to worker server
cpu = 0
worker_device = "/job:worker/task:%d/cpu:%d" % (FLAGS.task_index, cpu)
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
# The device setter will automatically place Variables ops on separate
# parameter servers (ps). The non-Variable ops will be placed on the workers.
# The ps use CPU and workers use corresponding GPU or CPU
with tf.device(
tf.train.replica_device_setter(
worker_device=worker_device,
ps_device="/job:ps/cpu:0",
cluster=cluster)):
global_step = tf.Variable(0, name="global_step", trainable=False)
# Ops: located on the worker specified with FLAGS.task_index
# Input placeholders
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
# Reshape input image for summary show
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
# hidden layer - layer_linear
with tf.name_scope('layer_linear'):
with tf.name_scope('weights'):
# Variables of the hidden layer
hid_w = tf.Variable(
tf.truncated_normal(
[IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
stddev=1.0 / IMAGE_PIXELS),
name="hid_w")
variable_summaries(hid_w)
with tf.name_scope('bias'):
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
variable_summaries(hid_b)
with tf.name_scope('Wx_plus_b'):
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
tf.summary.histogram('pre_activations', hid_lin)
# activation - Relu
hid = tf.nn.relu(hid_lin)
tf.summary.histogram('activations', hid)
# softmax layer
with tf.name_scope('softmax_layer'):
# Variables of the softmax layer
sm_w = tf.Variable(
tf.truncated_normal(
[FLAGS.hidden_units, 10],
stddev=1.0 / math.sqrt(FLAGS.hidden_units)),
name="sm_w")
sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
# lose function - cross_entropy
with tf.name_scope('cross_entropy'):
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
tf.summary.scalar('cross_entropy', cross_entropy)
# Optimization
with tf.name_scope('train'):
opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
if FLAGS.sync_replicas:
if FLAGS.replicas_to_aggregate is None:
replicas_to_aggregate = num_workers
else:
replicas_to_aggregate = FLAGS.replicas_to_aggregate
opt = tf.train.SyncReplicasOptimizer(
opt,
replicas_to_aggregate=replicas_to_aggregate,
total_num_replicas=num_workers,
name="mnist_sync_replicas")
train_step = opt.minimize(cross_entropy, global_step=global_step)
# Accuracy
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# Merge all the summaries and write them out to /tmp/mnist-data/log by defalut
summary_op = tf.summary.merge_all()
if FLAGS.sync_replicas:
local_init_op = opt.local_step_init_op
if is_chief:
local_init_op = opt.chief_init_op
ready_for_local_init_op = opt.ready_for_local_init_op
# Initial token and chief queue runners required by the sync_replicas mode
chief_queue_runner = opt.get_chief_queue_runner()
sync_init_op = opt.get_init_tokens_op()
init_op = tf.global_variables_initializer()
# train_dir = tempfile.mkdtemp()
log_dir = FLAGS.log_dir
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if FLAGS.sync_replicas:
sv = tf.train.Supervisor(
is_chief=is_chief,
logdir=FLAGS.log_dir,
init_op=init_op,
local_init_op=local_init_op,
ready_for_local_init_op=ready_for_local_init_op,
recovery_wait_secs=1,
global_step=global_step)
else:
sv = tf.train.Supervisor(
is_chief=is_chief,
logdir=FLAGS.log_dir,
init_op=init_op,
recovery_wait_secs=1,
global_step=global_step)
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement,
device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index])
# The chief worker (task_index==0) session will prepare the session,
# while the remaining workers will wait for the preparation to complete.
if is_chief:
print("Worker %d: Initializing session..." % FLAGS.task_index)
else:
print("Worker %d: Waiting for session to be initialized..." %
FLAGS.task_index)
if FLAGS.existing_servers:
server_grpc_url = "grpc://" + worker_spec[FLAGS.task_index]
print("Using existing server at: %s" % server_grpc_url)
sess = sv.prepare_or_wait_for_session(server_grpc_url,
config=sess_config)
else:
sess = sv.prepare_or_wait_for_session(server.target, config=sess_config)
print("Worker %d: Session initialization complete." % FLAGS.task_index)
if FLAGS.sync_replicas and is_chief:
# Chief worker will start the chief queue runner and call the init op.
sess.run(sync_init_op)
sv.start_queue_runners(sess, [chief_queue_runner])
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
# Perform training
time_begin = time.time()
print("Training begins @ %f" % time_begin)
local_step = 0
step = 0
while True:
# Test-set accuracy and record summary
if local_step % 10 == 0:
test_feed = {x: mnist.test.images, y_: mnist.test.labels}
acc, summary = sess.run([accuracy, summary_op], feed_dict=test_feed)
test_writer.add_summary(summary, local_step)
local_step += 1
print("Accuracy at local step %s: %s" % (local_step, acc))
else:
# Training feed
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
train_feed = {x: batch_xs, y_: batch_ys}
_, summary, step = sess.run([train_step, summary_op, global_step], feed_dict=train_feed)
local_step += 1
train_writer.add_summary(summary, step)
now = time.time()
print("%f: Worker %d: training step %d done (global step: %d)" %
(now, FLAGS.task_index, local_step, step))
if step >= FLAGS.train_steps:
break
time_end = time.time()
print("Training ends @ %f" % time_end)
training_time = time_end - time_begin
print("Training elapsed time: %f s" % training_time)
train_writer.close()
test_writer.close()
# Validation feed
val_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
val_xent = sess.run(cross_entropy, feed_dict=val_feed)
print("After %d training step(s), validation cross entropy = %g" %
(FLAGS.train_steps, val_xent))
print("Test-Accuracy: %2.2f" % sess.run(accuracy, feed_dict=val_feed))
sv.stop()
if __name__ == "__main__":
tf.app.run()