forked from DingXiaoH/ACNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
125 lines (90 loc) · 5.52 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch.nn as nn
import torch.nn.functional as F
from custom_layers.flatten_layer import FlattenLayer
from custom_layers.se_block import SEBlock
class ConvBuilder(nn.Module):
def __init__(self, base_config):
super(ConvBuilder, self).__init__()
print('ConvBuilder initialized.')
self.BN_eps = 1e-5
self.BN_momentum = 0.1
self.BN_affine = True
self.BN_track_running_stats = True
self.base_config = base_config
def set_BN_config(self, eps, momentum, affine, track_running_stats):
self.BN_eps = eps
self.BN_momentum = momentum
self.BN_afine = affine
self.BN_track_running_stats = track_running_stats
def Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', use_original_conv=False):
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode)
# The running estimates are kept with a default momentum of 0.1.
# By default, the elements of \gammaγ are sampled from \mathcal{U}(0, 1)U(0,1) and the elements of \betaβ are set to 0.
# If track_running_stats is set to False, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.
def BatchNorm2d(self, num_features, eps=None, momentum=None, affine=None, track_running_stats=None):
if eps is None:
eps = self.BN_eps
if momentum is None:
momentum = self.BN_momentum
if affine is None:
affine = self.BN_affine
if track_running_stats is None:
track_running_stats = self.BN_track_running_stats
return nn.BatchNorm2d(num_features=num_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats)
def Sequential(self, *args):
return nn.Sequential(*args)
def ReLU(self):
return nn.ReLU()
def Conv2dBN(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
conv_layer = self.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False, padding_mode=padding_mode, use_original_conv=use_original_conv)
bn_layer = self.BatchNorm2d(num_features=out_channels)
se = self.Sequential()
se.add_module('conv', conv_layer)
se.add_module('bn', bn_layer)
if self.base_config is not None and self.base_config.se_reduce_scale is not None and self.base_config.se_reduce_scale > 0:
se.add_module('se', SEBlock(input_channels=out_channels, internal_neurons=out_channels // self.base_config.se_reduce_scale))
return se
def Conv2dBNReLU(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
conv = self.Conv2dBN(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, padding_mode=padding_mode, use_original_conv=use_original_conv)
conv.add_module('relu', self.ReLU())
return conv
def BNReLUConv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', use_original_conv=False):
bn_layer = self.BatchNorm2d(num_features=in_channels)
conv_layer = self.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False, padding_mode=padding_mode)
se = self.Sequential()
se.add_module('bn', bn_layer)
se.add_module('relu', self.ReLU())
se.add_module('conv', conv_layer)
return se
def Linear(self, in_features, out_features, bias=True):
return nn.Linear(in_features=in_features, out_features=out_features, bias=bias)
def Identity(self):
return nn.Identity()
def ResIdentity(self, num_channels):
return nn.Identity()
def Dropout(self, keep_prob):
return nn.Dropout(p=1-keep_prob)
def Maxpool2d(self, kernel_size, stride=None):
return nn.MaxPool2d(kernel_size=kernel_size, stride=stride)
def Avgpool2d(self, kernel_size, stride=None):
return nn.AvgPool2d(kernel_size=kernel_size, stride=stride)
def Flatten(self):
return FlattenLayer()
def GAP(self, kernel_size):
gap = nn.Sequential()
gap.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=kernel_size))
gap.add_module('flatten', FlattenLayer())
return gap
def relu(self, in_features):
return F.relu(in_features)
def max_pool2d(self, in_features, kernel_size, stride, padding):
return F.max_pool2d(in_features, kernel_size=kernel_size, stride=stride, padding=padding)
def avg_pool2d(self, in_features, kernel_size, stride, padding):
return F.avg_pool2d(in_features, kernel_size=kernel_size, stride=stride, padding=padding)
def flatten(self, in_features):
result = in_features.view(in_features.size(0), -1)
return result