-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
executable file
·352 lines (292 loc) · 14.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from os.path import join, basename
import tensorflow as tf
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from time import sleep
from random import choice
import numpy as np
import pickle
import subprocess
from utils import *
from time import time
from datetime import datetime
from tensorflow.keras.losses import categorical_crossentropy
from functools import reduce
from comet_ml.query import Metric, Metadata, Parameter, Tag, Other
import comet_ml
import sys
from mpi4py import MPI
mpi = MPI.COMM_WORLD
nproc, rank = mpi.Get_size(), mpi.Get_rank()
localrank = int(os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK', rank))
api = comet_ml.api.API()
def read_comet_config():
with open('.comet.config', 'r') as f:
lines = f.readlines()
config = {}
for line in lines[1:]:
key, val = line.split('=')
val = val.replace('\n', '')
config[key] = val
return config
cometconfig = read_comet_config()
def count_available_gpus():
return str(subprocess.check_output(["nvidia-smi", "-L"])).count('UUID')
def _get_basename(name):
name = '/'.join(name.split('/')[2:])
return name.split(':')[0]
def _reshape_labels_like_logits(labels, logits, batchsize, nclass=10):
return tf.reshape(tf.one_hot(labels, nclass), [batchsize, nclass])
def metrics(labels, logits, batchsize, reverse_ce=False):
with tf.variable_scope('metrics'):
labels_reshaped = _reshape_labels_like_logits(labels, logits, batchsize)
if not reverse_ce:
xent = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
labels=labels_reshaped, logits=logits), name='xent')
else:
preds = tf.nn.softmax(logits)
xent = tf.reduce_mean(categorical_crossentropy(labels_reshaped, 1 - preds))
equal = tf.equal(labels, tf.cast(tf.argmax(logits, axis=1), dtype=labels.dtype))
acc = tf.reduce_mean(tf.to_float(equal), name='acc')
return xent, acc
def carlini(labels, logits, batchsize, clamp=-100):
with tf.variable_scope('carlini'):
labels_reshaped = _reshape_labels_like_logits(labels, logits, batchsize)
labels_reshaped = tf.cast(labels_reshaped, dtype=logits.dtype)
target_logit = tf.reduce_sum(logits * labels_reshaped, axis=1)
second_logit = tf.reduce_max(logits - logits * labels_reshaped, axis=1)
cw_indiv = tf.maximum(second_logit - target_logit, clamp)
# return tf.maximum(second_logit - target_logit, clamp) # , target_logit, second_logit, tmp
return tf.reduce_mean(cw_indiv) # , target_logit, second_logit, tmp
def count_params_in_scope():
scope = tf.get_default_graph().get_name_scope()
nparam = sum([np.prod(w.shape.as_list()) for w in tf.trainable_variables(scope)])
# print('scope:', scope, '#params', nparam)
return nparam
def imagesc(img, title=None, experiment=None, step=None, scale='minmax'):
if scale == 'minmax':
img = img - img.ravel().min()
img = img / img.ravel().max()
elif type(scale) is float or type(scale) is int: # good for perturbations
img = img * .5 / scale + .5
elif type(scale) is list or type(scale) is tuple: # good for images
assert len(scale) == 2, 'scale arg must be length 2'
lo, hi = scale
img = (img - lo) / (hi - lo)
plt.clf()
plt.imshow(img)
if title:
plt.title(title)
if experiment:
experiment.log_figure(figure_name=title, step=step)
def pgdstep(img, grad, orig, stepsize=.01, epsilon=.08, perturb=False):
if perturb: img += (np.random.rand(*img.shape) - .5) * 2 * epsilon
img += stepsize * np.sign(grad)
img = np.clip(img, orig - epsilon, orig + epsilon)
img = np.clip(img, 0, 255)
return img
def l2_weights(weights):
return tf.add_n([tf.reduce_sum(weight ** 2) for weight in weights.values() if len(weight.shape.as_list()) > 1])
def tf_preprocess(inputs, batchsize):
print('data augmentation ON')
# preprocessing data augmentation
inputs = tf.pad(inputs, [[0, 0], [4, 4], [4, 4], [0, 0]])
inputs = tf.random_crop(inputs, [batchsize, 32, 32, 3])
inputs = tf.map_fn(tf.image.random_flip_left_right, inputs)
return inputs
def avg_n_dicts(dicts, experiment=None, step=None):
# given a list of dicts with the same exact schema, return a single dict with same schema whose values are the
# key-wise average over all input dicts
means = {}
for dic in dicts:
for key in dic:
if key not in means: means[key] = 0
means[key] += dic[key] / len(dicts)
if experiment is not None:
experiment.log_metrics(means, step=step)
return means
def merge_n_dicts(dicts):
# given a list of dicts with mutually exclusive schema, return a dict of all key-value pairs merged
out = {}
for d in dicts:
if d is not None:
out.update(d)
return out
def plot_dict_series(dict_series, prefix=None, experiment=None, step=None):
# given a list of dicts with the same schema, make a series plot for each key in the schema
# if dict_series is a list of list of dicts, then overlap all plots in the second nested list
serialized = {}
for i, timestep in enumerate(dict_series):
if type(timestep) is dict: timestep = [timestep]
for dic in timestep:
for key, val in dic.items():
if key not in serialized: serialized[key] = []
if len(serialized[key]) <= i: serialized[key].append([])
serialized[key][-1].append(val)
for key, series in serialized.items():
plt.clf()
plt.plot(np.array(series))
plt.title('step {}'.format(step))
plt.ylabel(key)
if experiment is not None: experiment.log_figure(figure_name='{}_{}'.format(prefix, key), step=step)
def copy_to_args_from_experiment(args, craftexpt, attrs):
# given a comet experiment and an args namespace, copy the values of all attributes in attrs from experiment to args
for param in craftexpt.get_parameters_summary():
str2bool = dict(true=True, false=False)
# attrs is a list of attributes that you want to copy over
if param['name'] in attrs:
if rank == 0: print(f'from craftexpt copying {param["name"]}: {getattr(args, param["name"])} -> {param["valueCurrent"]}')
if param['valueCurrent'] == 'null': setattr(args, param['name'], None)
elif type(getattr(args, param['name'])) is bool: setattr(args, param['name'], str2bool[param['valueCurrent']])
elif type(getattr(args, param['name'])) is int: setattr(args, param['name'], int(float(param['valueCurrent'])))
elif type(getattr(args, param['name'])) is str: setattr(args, param['name'], str(param['valueCurrent']))
elif type(getattr(args, param['name'])) is float: setattr(args, param['name'], float(param['valueCurrent']))
elif type(getattr(args, param['name'])) is list: setattr(args, param['name'], eval(param['valueCurrent']))
else: raise Exception('there is an arg that is not of the typical types nor None. This could happen if this arg\'s default in parse.py is None. Fix it')
return args
def comet_pull_weight(epoch, api, args, rank, deterministic=True):
for attempt in range(4):
try:
tic = time()
projname = f'{cometconfig["workspace"]}/weightset-{args.net}-{args.weightset}'.lower()
expts = api.get(projname)
expts = [expt for expt in expts if int(expt.get_others_summary('nepoch')[0]) == epoch]
expt = expts[0] if deterministic else choice(expts)
assets = expt.get_asset_list()
assert len(assets) == 1, f'{len(assets)} assets found at {expt._get_experiment_url()}. There should only be 1 (the weights)'
asset = assets[0]
weights0 = pickle.loads(expt.get_asset(asset['assetId']))
print(f'rank {rank}: {asset["fileName"]} epoch {epoch} pulled from {expt._get_experiment_url()} in {time() - tic} sec')
return weights0
except:
print(f'comet pull weightset failed: attempt {attempt} epoch {epoch} rank {rank} from https://www.comet.ml/{projname}. Error: {sys.exc_info()}')
sleep(2)
raise Exception('failed to pull weights')
def comet_pull_weight_by_key(key, projname, epoch, api, rank, deterministic=True):
for attempt in range(4):
try:
tic = time()
expt = api.get(cometconfig["workspace"], projname, key)
assets = expt.get_asset_list()
assets = assets2dict(assets, 'fileName', 'assetId')
try:
weights0 = pickle.loads(expt.get_asset(assets[f'weights0-{epoch}']))
except:
name, assetid = assets.popitem()
print(f'warning: weights0-{epoch} not found. instead, will load {name}')
weights0 = pickle.loads(expt.get_asset(assetid))
print(f'rank {rank}: weights0-{epoch} epoch {epoch} pulled from {expt._get_experiment_url()} in {time() - tic} sec')
return weights0
except:
print(f'comet pull weightset failed on attempt {attempt} trying to extract epoch {epoch} at rank {rank}')
sleep(2)
raise Exception('failed to pull weights')
def comet_log_asset_weights_and_buffers(epoch, expt, meta, sess):
file = str(time()).replace('.', '')
with open(file, 'wb') as f:
pickle.dump(sess.run((meta.weights0, meta.buffers0)), f)
expt.log_asset(file, file_name=f'weights0-{epoch}', step=epoch)
os.remove(file)
def comet_log_asset(experiment, name, asset, step=None):
fname = str(time()).replace('.', '')
with open(fname, 'wb') as f:
pickle.dump(asset, f)
experiment.log_asset(fname, file_name=name, step=step)
os.remove(fname)
def transpose_list_of_lists(l):
return list(map(list, zip(*l)))
def set_available_gpus(args):
if len(args.gpu) > 0: os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(map(str, args.gpu))
else: args.gpu = list(range(count_available_gpus()))
return args.gpu
class Dummy:
def __getattribute__(self, attr):
return lambda *arg, **kwarg: None
def lr_schedule(lrnrate, epoch, warmupperiod=5, schedule=[100, 150, 200], max_epoch=250):
if schedule is None:
schedule = [max_epoch // 2.667, max_epoch // 1.6, max_epoch // 1.142]
warmupfactor = min(1, (epoch + 1) / (1e-6 + warmupperiod))
if epoch < schedule[0]:
return 1e00 * lrnrate * warmupfactor
elif epoch < schedule[1]:
return 1e-1 * lrnrate * warmupfactor
elif epoch < schedule[2]:
return 1e-2 * lrnrate * warmupfactor
else:
return 1e-3 * lrnrate * warmupfactor
def cr_schedule(craftrate, craftstep, warmupperiod=5, schedule=[20, 40]):
warmupfactor = min(((craftstep + 1) / warmupperiod) ** 2, 1)
if craftstep < schedule[0]:
return 1e00 * craftrate * warmupfactor
elif craftstep < schedule[1]:
return 1e-1 * craftrate * warmupfactor
else:
return 1e-2 * craftrate * warmupfactor
def epochmass(epoch):
return min(epoch / 5, 1)
def appendfeats(feats, feat, victimfeed, ybase, ytarget, batchsize):
# feats is a defaultdict of type list which stores a 50000xNdim matrix of features for the entire dataset
# feat is the minibatch of features to append
cleaninputs, cleanlabels = [value for key, value in victimfeed.items() if 'adapter-0/cleaninputs' in str(key)][0]
cleanmask = [value for key, value in victimfeed.items() if 'cleanmask' in str(key)][0]
poisonmask = [value for key, value in victimfeed.items() if 'poisonmask' in str(key)][0]
npoison = sum(poisonmask)
feats['targetfeats'] = feat[batchsize:]
feats['targetlabels'] = ytarget
feats['cleanfeats'].extend(feat[npoison:batchsize])
feats['poisonfeats'].extend(feat[:npoison])
feats['cleanlabels'].extend(cleanlabels[cleanmask])
feats['poisonlabels'].extend(ybase[poisonmask])
def get_featdist(feats):
targetfeats, poisonfeats = feats['targetfeats'], feats['poisonfeats']
targetfeat = np.array(targetfeats[:1])
poisonfeats = np.array(poisonfeats)
featdist = np.mean(np.linalg.norm(poisonfeats - targetfeat, axis=1))
return featdist
def uid2craftkey(uid, craftproj):
conditions = [Parameter('uid') == uid,
Metadata('duration') > 10,]
for attempt in range(4):
expts = api.query(cometconfig["workspace"], craftproj, reduce(lambda x, y: x & y, conditions))
assert len(expts) > 0, f'{len(expts)} expts found for this uid'
timestamp = [expt.end_server_timestamp for expt in expts]
expt = expts[np.argmax(timestamp)]
if len(expts) > 1: print(f'there were {len(expts)} expts with same uid. taking most recent one at {expt.url} '
f'finishing at {datetime.fromtimestamp(expt.end_server_timestamp / 1e3 - 3600 * 5)}')
return expt.id
raise Exception(f'NO EXPTS FOUND WITH uid {uid} in craftproj {craftproj}')
def get_param(expt, param):
return expt.get_parameters_summary(param)['valueCurrent']
def print_command_and_args(args):
command = 'python ' + ' '.join(sys.argv)
print(command)
if rank == 0:
print('\n'.join([f'{key} == {val}' for key, val in sorted(vars(args).items())]))
return command
def assets2dict(assets, keystr, valuestr):
# helps when doing comet api.get_something_summary() and it returns a list of dicts all with the attribute 'name'
return {asset[keystr]: asset[valuestr] for asset in assets}
def tf_basename(tensor):
name = tensor.name
name = basename(name)
if ':' in name:
name = name.split(':')[0]
return name
def trunc_decimal(val):
if val > 1e10: return 'inf'
return int(val * 100) / 100
def package_poisoned_dataset(poisoninputs, xtrain, ytrain, xtarget, ytarget, ytargetadv, xvalid, yvalid, args, craftstep):
start = int(args.poisonclass / (max(ytrain) + 1) * len(xtrain))
xtrain[start: start + args.npoison] = poisoninputs
asset = dict(xtrain=xtrain, ytrain=ytrain, xtarget=xtarget, ytarget=ytarget, ytargetadv=ytargetadv, xvalid=xvalid, yvalid=yvalid)
file = f'{args.poisondatasetfile}-{craftstep}.pkl'
with open(file, 'wb') as f: pickle.dump(asset, f)
print(f'argument -savepoisondataset is ON: poison dataset saved for expt {args.craftkey} craftstep {craftstep} at {file}')
def comet_log_asset_apiexpt(expt, fname, asset, step=None):
with open(fname, 'wb') as f:
pickle.dump(asset, f)
expt.log_asset(filename=fname, step=step)
os.remove(fname)