-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrecolor.py
47 lines (39 loc) · 2.4 KB
/
recolor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
import tensorflow_probability as tfp
def recolor(inputs, colorperts, name=None, eye=None):
'''
:param img: input images on which recolor is applied. Shape [B, H, W, 3]. Type is numpy array
:param gridshape: Shape [nL, nU, nV]. Number of points along each axis in the colorspace grid
:return: color-transformed image, color perturbation function trainable parameters
'''
gridshape = colorperts.shape.as_list()[1:]
inputshape = inputs.shape.as_list()
assert len(inputshape) == 4, 'input to recolor must be rank 4'
assert len(gridshape) == 4, 'gridshape to recolor must be rank 4'
# define identity color transform. Shape [ncolorres, ncolorres, ncolorres, 3]
xrefmin = [0., -.5, -.5] # minimum/maximum values for LUV channels
xrefmax = [1., .5, .5]
if eye is None:
eye = tf.meshgrid(*[tf.linspace(start=start, stop=stop, num=ncolorres) for start, stop, ncolorres in zip(xrefmin, xrefmax, gridshape)], indexing='ij')
eye = tf.stack(eye, axis=-1)
# take a single image and a color perturbation grid and perform the color transformation
def _recolor(arg):
img, colorpert = arg # img and colorpert shape [ncolorres, ncolorres, ncolorres, 3]
img = tf.image.rgb_to_yuv(img) / 255.
yref = eye + colorpert
img = tfp.math.batch_interp_regular_nd_grid(img, xrefmin, xrefmax, yref, axis=-4)
# img = tf.image.yuv_to_rgb(img) * 255.
return img
# apply _recolor to all images in batch
outputs = tf.map_fn(_recolor, (inputs, colorperts), dtype=tf.float32, parallel_iterations=500, name=name)
outputs = tf.image.yuv_to_rgb(outputs) * 255.
return outputs, eye, xrefmin, xrefmax
def smoothloss(colorperts, gridshape):
'''get the mean norm of the discrete gradients along each direction in colorspace'''
# the gradients in each direction are calculated as the difference between the neighboring grid points in colorspace divided by their distance which is 1 / ncolorres
dpert_y = colorperts[:, :-1, :, :, :] - colorperts[:, 1:, :, :, :]
dpert_u = colorperts[:, :, :-1, :, :] - colorperts[:, :, 1:, :, :]
dpert_v = colorperts[:, :, :, :-1, :] - colorperts[:, :, :, 1:, :]
flattened = tf.concat([tf.reshape((d * ncolorres) ** 2, [-1]) for d, ncolorres in zip([dpert_y, dpert_u, dpert_v], gridshape)], axis=0)
smoothloss = tf.reduce_mean(flattened)
return smoothloss