forked from BrambleXu/news-graph
-
Notifications
You must be signed in to change notification settings - Fork 1
/
news_graph.py
228 lines (200 loc) · 8.21 KB
/
news_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import re
from collections import Counter
import spacy
from graph_show import GraphShow
from textrank import TextRank
nlp = spacy.load('en_core_web_lg')
class NewsMining():
"""News Mining"""
def __init__(self):
self.textranker = TextRank()
self.ners = ['PERSON', 'ORG', 'GPE']
self.ner_dict = {
'PERSON': 'Person', # People, including fictional
'ORG': 'Organization', # Companies, agencies, institutions, etc.
'GPE': 'Location', # Countries, cities, states.
}
# dependency markers for subjects
self.SUBJECTS = {"nsubj", "nsubjpass",
"csubj", "csubjpass", "agent", "expl"}
# dependency markers for objects
self.OBJECTS = {"dobj", "dative", "attr", "oprd"}
self.graph_shower = GraphShow()
def clean_spaces(self, s):
s = s.replace('\r', '')
s = s.replace('\t', ' ')
s = s.replace('\n', ' ')
return s
def remove_noisy(self, content):
"""Remove brackets"""
p1 = re.compile(r'([^)]*)')
p2 = re.compile(r'\([^\)]*\)')
return p2.sub('', p1.sub('', content))
def collect_ners(self, ents):
"""Collect token only with PERSON, ORG, GPE"""
collected_ners = []
for token in ents:
if token.label_ in self.ners:
collected_ners.append(token.text + '/' + token.label_)
return collected_ners
def conll_syntax(self, sent):
"""Convert one sentence to conll format."""
tuples = list()
for word in sent:
if word.head is word:
head_idx = 0
else:
head_idx = word.head.i + 1
tuples.append([word.i + 1, # Current word index, begin with 1
word.text, # Word
word.lemma_, # Lemma
word.pos_, # Coarse-grained tag
word.tag_, # Fine-grained tag
'_',
head_idx, # Head of current Index
word.dep_, # Relation
'_', '_'])
return tuples
def syntax_parse(self, sent):
"""Convert one sentence to conll format."""
tuples = list()
for word in sent:
if word.head is word:
head_idx = 0
else:
head_idx = word.head.i + 1
tuples.append([word.i + 1, # Current word index, begin with 1
word.text, # Word
word.pos_, # Coarse-grained tag
word.head,
head_idx, # Head of current Index
word.dep_, # Relation
])
return tuples
def build_parse_chile_dict(self, sent, tuples):
child_dict_list = list()
for word in sent:
child_dict = dict()
for arc in tuples:
if arc[3] == word:
if arc[-1] in child_dict:
child_dict[arc[-1]].append(arc)
else:
child_dict[arc[-1]] = []
child_dict[arc[-1]].append(arc)
child_dict_list.append([word, word.pos_, word.i, child_dict])
return child_dict_list
def complete_VOB(self, verb, child_dict_list):
'''Find VOB by SBV'''
for child in child_dict_list:
word = child[0]
# child_dict: {'dobj': [[7, 'startup', 'NOUN', buying, 5, 'dobj']], 'prep': [[8, 'for', 'ADP', buying, 5, 'prep']]}
child_dict = child[3]
if word == verb:
for object_type in self.OBJECTS: # object_type: 'dobj'
if object_type not in child_dict:
continue
# [7, 'startup', 'NOUN', buying, 5, 'dobj']
vob = child_dict[object_type][0]
obj = vob[1] # 'startup'
return obj
return ''
def extract_triples(self, sent):
svo = []
tuples = self.syntax_parse(sent)
child_dict_list = self.build_parse_chile_dict(sent, tuples)
for tuple in tuples:
rel = tuple[-1]
if rel in self.SUBJECTS:
sub_wd = tuple[1]
verb_wd = tuple[3]
obj = self.complete_VOB(verb_wd, child_dict_list)
subj = sub_wd
verb = verb_wd.text
if not obj:
svo.append([subj, verb])
else:
svo.append([subj, verb+' '+obj])
return svo
def extract_keywords(self, words_postags):
return self.textranker.extract_keywords(words_postags, 10)
def collect_coexist(self, ner_sents, ners):
"""Construct NER co-occurrence matrices"""
co_list = []
for words in ner_sents:
co_ners = set(ners).intersection(set(words))
co_info = self.combination(list(co_ners))
co_list += co_info
if not co_list:
return []
return {i[0]: i[1] for i in Counter(co_list).most_common()}
def combination(self, a):
'''list all combination'''
combines = []
if len(a) == 0:
return []
for i in a:
for j in a:
if i == j:
continue
combines.append('@'.join([i, j]))
return combines
def main(self, content):
'''Main function'''
if not content:
return []
words_postags = [] # token and its POS tag
ner_sents = [] # store sentences which contain NER entity
ners = [] # store all NER entity from whole article
triples = [] # store subject verb object
events = [] # store events
# 01 remove linebreaks and brackets
content = self.remove_noisy(content)
content = self.clean_spaces(content)
# 02 split to sentences
doc = nlp(content)
for i, sent in enumerate(doc.sents):
words_postags = [[token.text, token.pos_] for token in sent]
words = [token.text for token in sent]
postags = [token.pos_ for token in sent]
ents = nlp(sent.text).ents # NER detection
collected_ners = self.collect_ners(ents)
if collected_ners: # only extract triples when the sentence contains 'PERSON', 'ORG', 'GPE'
triple = self.extract_triples(sent)
if not triple:
continue
triples += triple
ners += collected_ners
ner_sents.append(
[token.text + '/' + token.label_ for token in sent.ents])
# 03 get keywords
keywords = [i[0] for i in self.extract_keywords(words_postags)]
for keyword in keywords:
name = keyword
cate = 'keyword'
events.append([name, cate])
# 04 add triples to event only the word in keyword
for t in triples:
if (t[0] in keywords or t[1] in keywords) and len(t[0]) > 1 and len(t[1]) > 1:
events.append([t[0], t[1]])
# 05 get word frequency and add to events
word_dict = [i for i in Counter([i[0] for i in words_postags if i[1] in [
'NOUN', 'PROPN', 'VERB'] and len(i[0]) > 1]).most_common()][:10]
for wd in word_dict:
name = wd[0]
cate = 'frequency'
events.append([name, cate])
# 06 get NER from whole article
ner_dict = {i[0]: i[1] for i in Counter(ners).most_common(20)}
for ner in ner_dict:
name = ner.split('/')[0] # Jessica Miller
cate = self.ner_dict[ner.split('/')[1]] # PERSON
events.append([name, cate])
# 07 get all NER entity co-occurrence information
# here ner_dict is from above 06
co_dict = self.collect_coexist(ner_sents, list(ner_dict.keys()))
co_events = [[i.split('@')[0].split(
'/')[0], i.split('@')[1].split('/')[0]] for i in co_dict]
events += co_events
# 08 show event graph
self.graph_shower.create_page(events)