forked from learning-at-home/hivemind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
187 lines (148 loc) · 6.64 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import codecs
import glob
import hashlib
import os
import re
import subprocess
import tarfile
import tempfile
import urllib.request
from pkg_resources import parse_requirements, parse_version
from setuptools import find_packages, setup
from setuptools.command.build_py import build_py
from setuptools.command.develop import develop
P2PD_VERSION = "v0.3.16"
P2PD_SOURCE_URL = f"https://github.com/learning-at-home/go-libp2p-daemon/archive/refs/tags/{P2PD_VERSION}.tar.gz"
P2PD_BINARY_URL = f"https://github.com/learning-at-home/go-libp2p-daemon/releases/download/{P2PD_VERSION}/"
# The value is sha256 of the binary from the release page
EXECUTABLES = {
"p2pd": "057ec61edbe926cf049e9532d43ea9540da55db7b2d8c816d2bbdddce23f3cdf",
}
here = os.path.abspath(os.path.dirname(__file__))
def sha256(path):
if not os.path.exists(path):
return None
with open(path, "rb") as f:
return hashlib.sha256(f.read()).hexdigest()
def proto_compile(output_path):
import grpc_tools.protoc
cli_args = [
"grpc_tools.protoc",
"--proto_path=hivemind/proto",
f"--python_out={output_path}",
] + glob.glob("hivemind/proto/*.proto")
code = grpc_tools.protoc.main(cli_args)
if code: # hint: if you get this error in jupyter, run in console for richer error message
raise ValueError(f"{' '.join(cli_args)} finished with exit code {code}")
# Make pb2 imports in generated scripts relative
for script in glob.iglob(f"{output_path}/*.py"):
with open(script, "r+") as file:
code = file.read()
file.seek(0)
file.write(re.sub(r"\n(import .+_pb2.*)", "from . \\1", code))
file.truncate()
def build_p2p_daemon():
result = subprocess.run("go version", capture_output=True, shell=True).stdout.decode("ascii", "replace")
m = re.search(r"^go version go([\d.]+)", result)
if m is None:
raise FileNotFoundError("Could not find golang installation")
version = parse_version(m.group(1))
if version < parse_version("1.13"):
raise EnvironmentError(f"Newer version of go required: must be >= 1.13, found {version}")
with tempfile.TemporaryDirectory() as tempdir:
dest = os.path.join(tempdir, "libp2p-daemon.tar.gz")
urllib.request.urlretrieve(P2PD_SOURCE_URL, dest)
with tarfile.open(dest, "r:gz") as tar:
tar.extractall(tempdir)
for executable in EXECUTABLES:
result = subprocess.run(
["go", "build", "-o", os.path.join(here, "hivemind", "hivemind_cli", executable)],
cwd=os.path.join(tempdir, f"go-libp2p-daemon-{P2PD_VERSION.lstrip('v')}", executable),
)
if result.returncode != 0:
raise RuntimeError(f"Failed to build {executable}: exited with status code: {result.returncode}")
def download_p2p_daemon():
for executable, expected_hash in EXECUTABLES.items():
binary_path = os.path.join(here, "hivemind", "hivemind_cli", executable)
if sha256(binary_path) != expected_hash:
binary_url = os.path.join(P2PD_BINARY_URL, executable)
print(f"Downloading {binary_url}")
urllib.request.urlretrieve(binary_url, binary_path)
os.chmod(binary_path, 0o777)
actual_hash = sha256(binary_path)
if actual_hash != expected_hash:
raise RuntimeError(
f"The sha256 checksum for {executable} does not match (expected: {expected_hash}, actual: {actual_hash})"
)
class BuildPy(build_py):
user_options = build_py.user_options + [("buildgo", None, "Builds p2pd from source")]
def initialize_options(self):
super().initialize_options()
self.buildgo = False
def run(self):
if self.buildgo:
build_p2p_daemon()
else:
download_p2p_daemon()
super().run()
proto_compile(os.path.join(self.build_lib, "hivemind", "proto"))
class Develop(develop):
def run(self):
self.reinitialize_command("build_py", build_lib=here)
self.run_command("build_py")
super().run()
with open("requirements.txt") as requirements_file:
install_requires = list(map(str, parse_requirements(requirements_file)))
# loading version from setup.py
with codecs.open(os.path.join(here, "hivemind/__init__.py"), encoding="utf-8") as init_file:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", init_file.read(), re.M)
version_string = version_match.group(1)
extras = {}
with open("requirements-dev.txt") as dev_requirements_file:
extras["dev"] = list(map(str, parse_requirements(dev_requirements_file)))
with open("requirements-docs.txt") as docs_requirements_file:
extras["docs"] = list(map(str, parse_requirements(docs_requirements_file)))
extras["bitsandbytes"] = ["bitsandbytes~=0.34.0"]
extras["all"] = extras["dev"] + extras["docs"] + extras["bitsandbytes"]
setup(
name="hivemind",
version=version_string,
cmdclass={"build_py": BuildPy, "develop": Develop},
description="Decentralized deep learning in PyTorch",
long_description="Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers "
"across the world.",
author="Learning@home & contributors",
author_email="[email protected]",
url="https://github.com/learning-at-home/hivemind",
packages=find_packages(exclude=["tests"]),
package_data={"hivemind": ["proto/*", "hivemind_cli/*"]},
include_package_data=True,
license="MIT",
setup_requires=["grpcio-tools"],
install_requires=install_requires,
extras_require=extras,
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
entry_points={
"console_scripts": [
"hivemind-dht = hivemind.hivemind_cli.run_dht:main",
"hivemind-server = hivemind.hivemind_cli.run_server:main",
]
},
# What does your project relate to?
keywords="pytorch, deep learning, machine learning, gpu, distributed computing, volunteer computing, dht",
)