-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathunit_tests.py
44 lines (28 loc) · 1.41 KB
/
unit_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
import numpy as np
from layers import FcLayerDeploy, ConvLayerDeploy
def test_ConvLayerDeploy():
weights = np.random.uniform(-10.0, 10.0, size=(3, 3, 4, 5)).astype(np.float32)
prune_mask = np.random.uniform(0.0, 2.0, size=(3, 3, 4, 5)).astype(np.int32).astype(np.float32)
x = np.random.uniform(0.0, 1.0, size=(2, 14, 14, 4)).astype(np.float32)
x = tf.constant(x)
L = ConvLayerDeploy(weights, prune_mask, 14, 14, 2, 'conv')
x_matmul_sparse = L.forward_matmul_preprocess(x)
y_matmul_sparse = L.forward_matmul(x_matmul_sparse)
y_matmul_sparse = L.forward_matmul_postprocess(y_matmul_sparse)
y_conv = L.forward_conv(x)
sess = tf.Session()
y_matmul_sparse_data, y_conv_data = sess.run([y_matmul_sparse, y_conv])
assert np.mean(np.abs(y_matmul_sparse_data - y_conv_data)) < 1e-6
def test_FcLayerDeploy():
weights = np.random.uniform(-10.0, 10.0, size=(5, 10)).astype(np.float32)
prune_mask = np.random.uniform(0.0, 2.0, size=(5, 10)).astype(np.int32).astype(np.float32)
x = np.random.uniform(0.0, 1.0, size=(2, 5)).astype(np.float32)
x = tf.constant(x)
L_sparse = FcLayerDeploy(weights, prune_mask, 'fc')
L_dense = FcLayerDeploy(weights, prune_mask, 'fc', dense=True)
y_sparse = L_sparse.forward_matmul(x)
y_dense = L_dense.forward_matmul(x)
sess = tf.Session()
y_sparse_data, y_dense_data = sess.run([y_sparse, y_dense])
assert np.mean(np.abs(y_sparse_data - y_dense_data)) < 1e-6