-
Notifications
You must be signed in to change notification settings - Fork 3
/
app.py
101 lines (74 loc) · 3.55 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import GPT4All, HuggingFaceHub
from html_templates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(raw_text):
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len
)
chunks = text_splitter.split_text(raw_text)
return chunks
def get_vector_store(text_chunks):
embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-large")
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
return vectorstore
def conversation_chain(vectorstore):
llm = HuggingFaceHub(repo_id = "google/flan-t5-small", model_kwargs = {"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_key = "chat_history", return_message = True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm = llm,
retriever = vectorstore.as_retriever(),
memory = memory
)
return conversation_chain
def handle_user_input(user_input):
response = st.session_state.conversation({'question' : user_input})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html = True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html = True)
def main():
load_dotenv()
st.set_page_config(page_title = "Chat with Multiple PDFs", page_icon = ":books")
st.write(css, unsafe_allow_html = True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with Multiple PDFs :books:")
user_input = st.text_input("Ask a question about your documents: ")
if user_input:
handle_user_input(user_input)
st.write(user_template.replace("{{MSG}}", "Hello Hagrid (Knower of all)"), unsafe_allow_html = True)
st.write(bot_template.replace("{{MSG}}", "Hello Muggle"), unsafe_allow_html = True)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files = True)
if st.button("Process"):
with st.spinner("Processing"):
raw_text = get_pdf_text(pdf_docs)
st.write(raw_text)
text_chunks = get_text_chunks(raw_text)
st.write(text_chunks)
vector_store = get_vector_store(text_chunks)
st.session_state.conversation = conversation_chain(vector_store)
if __name__ == '__main__':
main()