diff --git a/.rat-excludes b/.rat-excludes index 85bfad60fcadc..a2b5665a0be26 100644 --- a/.rat-excludes +++ b/.rat-excludes @@ -39,4 +39,4 @@ work .*\.q golden test.out/* -.*iml +.*iml \ No newline at end of file diff --git a/bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala b/bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala index 70c7474a936dc..70a99b33d753c 100644 --- a/bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala +++ b/bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala @@ -220,20 +220,23 @@ object Bagel extends Logging { */ private def comp[K: Manifest, V <: Vertex, M <: Message[K], C]( sc: SparkContext, - grouped: RDD[(K, (Seq[C], Seq[V]))], + grouped: RDD[(K, (Iterable[C], Iterable[V]))], compute: (V, Option[C]) => (V, Array[M]), storageLevel: StorageLevel ): (RDD[(K, (V, Array[M]))], Int, Int) = { var numMsgs = sc.accumulator(0) var numActiveVerts = sc.accumulator(0) - val processed = grouped.flatMapValues { - case (_, vs) if vs.size == 0 => None - case (c, vs) => + val processed = grouped.mapValues(x => (x._1.iterator, x._2.iterator)) + .flatMapValues { + case (_, vs) if !vs.hasNext => None + case (c, vs) => { val (newVert, newMsgs) = - compute(vs(0), c match { - case Seq(comb) => Some(comb) - case Seq() => None - }) + compute(vs.next, + c.hasNext match { + case true => Some(c.next) + case false => None + } + ) numMsgs += newMsgs.size if (newVert.active) { @@ -241,6 +244,7 @@ object Bagel extends Logging { } Some((newVert, newMsgs)) + } }.persist(storageLevel) // Force evaluation of processed RDD for accurate performance measurements diff --git a/bin/compute-classpath.sh b/bin/compute-classpath.sh index be37102dc069a..2a2bb376fd71f 100755 --- a/bin/compute-classpath.sh +++ b/bin/compute-classpath.sh @@ -63,7 +63,7 @@ fi # built with Hive, so first check if the datanucleus jars exist, and then ensure the current Spark # assembly is built for Hive, before actually populating the CLASSPATH with the jars. # Note that this check order is faster (by up to half a second) in the case where Hive is not used. -num_datanucleus_jars=$(ls "$FWDIR"/lib_managed/jars/ | grep "datanucleus-.*\\.jar" | wc -l) +num_datanucleus_jars=$(ls "$FWDIR"/lib_managed/jars/ 2>/dev/null | grep "datanucleus-.*\\.jar" | wc -l) if [ $num_datanucleus_jars -gt 0 ]; then AN_ASSEMBLY_JAR=${ASSEMBLY_JAR:-$DEPS_ASSEMBLY_JAR} num_hive_files=$(jar tvf "$AN_ASSEMBLY_JAR" org/apache/hadoop/hive/ql/exec 2>/dev/null | wc -l) diff --git a/core/src/main/scala/org/apache/spark/Aggregator.scala b/core/src/main/scala/org/apache/spark/Aggregator.scala index ceead59b79ed6..59fdf659c9e11 100644 --- a/core/src/main/scala/org/apache/spark/Aggregator.scala +++ b/core/src/main/scala/org/apache/spark/Aggregator.scala @@ -17,15 +17,18 @@ package org.apache.spark +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.collection.{AppendOnlyMap, ExternalAppendOnlyMap} /** + * :: DeveloperApi :: * A set of functions used to aggregate data. * * @param createCombiner function to create the initial value of the aggregation. * @param mergeValue function to merge a new value into the aggregation result. * @param mergeCombiners function to merge outputs from multiple mergeValue function. */ +@DeveloperApi case class Aggregator[K, V, C] ( createCombiner: V => C, mergeValue: (C, V) => C, diff --git a/core/src/main/scala/org/apache/spark/Dependency.scala b/core/src/main/scala/org/apache/spark/Dependency.scala index 1cd629c15bd46..2c31cc20211ff 100644 --- a/core/src/main/scala/org/apache/spark/Dependency.scala +++ b/core/src/main/scala/org/apache/spark/Dependency.scala @@ -17,19 +17,24 @@ package org.apache.spark +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.rdd.RDD import org.apache.spark.serializer.Serializer /** + * :: DeveloperApi :: * Base class for dependencies. */ +@DeveloperApi abstract class Dependency[T](val rdd: RDD[T]) extends Serializable /** + * :: DeveloperApi :: * Base class for dependencies where each partition of the parent RDD is used by at most one * partition of the child RDD. Narrow dependencies allow for pipelined execution. */ +@DeveloperApi abstract class NarrowDependency[T](rdd: RDD[T]) extends Dependency(rdd) { /** * Get the parent partitions for a child partition. @@ -41,6 +46,7 @@ abstract class NarrowDependency[T](rdd: RDD[T]) extends Dependency(rdd) { /** + * :: DeveloperApi :: * Represents a dependency on the output of a shuffle stage. * @param rdd the parent RDD * @param partitioner partitioner used to partition the shuffle output @@ -48,6 +54,7 @@ abstract class NarrowDependency[T](rdd: RDD[T]) extends Dependency(rdd) { * the default serializer, as specified by `spark.serializer` config option, will * be used. */ +@DeveloperApi class ShuffleDependency[K, V]( @transient rdd: RDD[_ <: Product2[K, V]], val partitioner: Partitioner, @@ -61,20 +68,24 @@ class ShuffleDependency[K, V]( /** + * :: DeveloperApi :: * Represents a one-to-one dependency between partitions of the parent and child RDDs. */ +@DeveloperApi class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int) = List(partitionId) } /** + * :: DeveloperApi :: * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs. * @param rdd the parent RDD * @param inStart the start of the range in the parent RDD * @param outStart the start of the range in the child RDD * @param length the length of the range */ +@DeveloperApi class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int) extends NarrowDependency[T](rdd) { diff --git a/core/src/main/scala/org/apache/spark/FutureAction.scala b/core/src/main/scala/org/apache/spark/FutureAction.scala index f2decd14ef6d9..1e4dec86a0530 100644 --- a/core/src/main/scala/org/apache/spark/FutureAction.scala +++ b/core/src/main/scala/org/apache/spark/FutureAction.scala @@ -21,13 +21,16 @@ import scala.concurrent._ import scala.concurrent.duration.Duration import scala.util.Try +import org.apache.spark.annotation.Experimental import org.apache.spark.rdd.RDD import org.apache.spark.scheduler.{JobFailed, JobSucceeded, JobWaiter} /** + * :: Experimental :: * A future for the result of an action to support cancellation. This is an extension of the * Scala Future interface to support cancellation. */ +@Experimental trait FutureAction[T] extends Future[T] { // Note that we redefine methods of the Future trait here explicitly so we can specify a different // documentation (with reference to the word "action"). @@ -84,9 +87,11 @@ trait FutureAction[T] extends Future[T] { /** + * :: Experimental :: * A [[FutureAction]] holding the result of an action that triggers a single job. Examples include * count, collect, reduce. */ +@Experimental class SimpleFutureAction[T] private[spark](jobWaiter: JobWaiter[_], resultFunc: => T) extends FutureAction[T] { @@ -141,17 +146,19 @@ class SimpleFutureAction[T] private[spark](jobWaiter: JobWaiter[_], resultFunc: private def awaitResult(): Try[T] = { jobWaiter.awaitResult() match { case JobSucceeded => scala.util.Success(resultFunc) - case JobFailed(e: Exception, _) => scala.util.Failure(e) + case JobFailed(e: Exception) => scala.util.Failure(e) } } } /** + * :: Experimental :: * A [[FutureAction]] for actions that could trigger multiple Spark jobs. Examples include take, * takeSample. Cancellation works by setting the cancelled flag to true and interrupting the * action thread if it is being blocked by a job. */ +@Experimental class ComplexFutureAction[T] extends FutureAction[T] { // Pointer to the thread that is executing the action. It is set when the action is run. diff --git a/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala b/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala index 9b1601d5b95fa..fd1802ba2f984 100644 --- a/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala +++ b/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala @@ -21,7 +21,7 @@ package org.apache.spark * An iterator that wraps around an existing iterator to provide task killing functionality. * It works by checking the interrupted flag in [[TaskContext]]. */ -class InterruptibleIterator[+T](val context: TaskContext, val delegate: Iterator[T]) +private[spark] class InterruptibleIterator[+T](val context: TaskContext, val delegate: Iterator[T]) extends Iterator[T] { def hasNext: Boolean = !context.interrupted && delegate.hasNext diff --git a/core/src/main/scala/org/apache/spark/Logging.scala b/core/src/main/scala/org/apache/spark/Logging.scala index a632dcffdf681..db62055bf58a7 100644 --- a/core/src/main/scala/org/apache/spark/Logging.scala +++ b/core/src/main/scala/org/apache/spark/Logging.scala @@ -22,11 +22,18 @@ import org.slf4j.{Logger, LoggerFactory} import org.slf4j.impl.StaticLoggerBinder import org.slf4j.bridge.SLF4JBridgeHandler +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * Utility trait for classes that want to log data. Creates a SLF4J logger for the class and allows * logging messages at different levels using methods that only evaluate parameters lazily if the * log level is enabled. + * + * NOTE: DO NOT USE this class outside of Spark. It is intended as an internal utility. + * This will likely be changed or removed in future releases. */ +@DeveloperApi trait Logging { // Make the log field transient so that objects with Logging can // be serialized and used on another machine diff --git a/core/src/main/scala/org/apache/spark/SerializableWritable.scala b/core/src/main/scala/org/apache/spark/SerializableWritable.scala index dff665cae6cb6..e50b9ac2291f9 100644 --- a/core/src/main/scala/org/apache/spark/SerializableWritable.scala +++ b/core/src/main/scala/org/apache/spark/SerializableWritable.scala @@ -23,6 +23,9 @@ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable +import org.apache.spark.annotation.DeveloperApi + +@DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value = t override def toString = t.toString diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index d7124616d3bfb..f7750514ae13d 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -34,6 +34,7 @@ import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat, Job => NewHad import org.apache.hadoop.mapreduce.lib.input.{FileInputFormat => NewFileInputFormat} import org.apache.mesos.MesosNativeLibrary +import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.broadcast.Broadcast import org.apache.spark.deploy.{LocalSparkCluster, SparkHadoopUtil} import org.apache.spark.input.WholeTextFileInputFormat @@ -48,22 +49,35 @@ import org.apache.spark.ui.SparkUI import org.apache.spark.util.{ClosureCleaner, MetadataCleaner, MetadataCleanerType, TimeStampedWeakValueHashMap, Utils} /** + * :: DeveloperApi :: * Main entry point for Spark functionality. A SparkContext represents the connection to a Spark * cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster. * * @param config a Spark Config object describing the application configuration. Any settings in * this config overrides the default configs as well as system properties. - * @param preferredNodeLocationData used in YARN mode to select nodes to launch containers on. Can - * be generated using [[org.apache.spark.scheduler.InputFormatInfo.computePreferredLocations]] - * from a list of input files or InputFormats for the application. */ -class SparkContext( - config: SparkConf, - // This is used only by YARN for now, but should be relevant to other cluster types (Mesos, - // etc) too. This is typically generated from InputFormatInfo.computePreferredLocations. It - // contains a map from hostname to a list of input format splits on the host. - val preferredNodeLocationData: Map[String, Set[SplitInfo]] = Map()) - extends Logging { + +@DeveloperApi +class SparkContext(config: SparkConf) extends Logging { + + // This is used only by YARN for now, but should be relevant to other cluster types (Mesos, + // etc) too. This is typically generated from InputFormatInfo.computePreferredLocations. It + // contains a map from hostname to a list of input format splits on the host. + private[spark] var preferredNodeLocationData: Map[String, Set[SplitInfo]] = Map() + + /** + * :: DeveloperApi :: + * Alternative constructor for setting preferred locations where Spark will create executors. + * + * @param preferredNodeLocationData used in YARN mode to select nodes to launch containers on. Ca + * be generated using [[org.apache.spark.scheduler.InputFormatInfo.computePreferredLocations]] + * from a list of input files or InputFormats for the application. + */ + @DeveloperApi + def this(config: SparkConf, preferredNodeLocationData: Map[String, Set[SplitInfo]]) = { + this(config) + this.preferredNodeLocationData = preferredNodeLocationData + } /** * Alternative constructor that allows setting common Spark properties directly @@ -93,10 +107,45 @@ class SparkContext( environment: Map[String, String] = Map(), preferredNodeLocationData: Map[String, Set[SplitInfo]] = Map()) = { - this(SparkContext.updatedConf(new SparkConf(), master, appName, sparkHome, jars, environment), - preferredNodeLocationData) + this(SparkContext.updatedConf(new SparkConf(), master, appName, sparkHome, jars, environment)) + this.preferredNodeLocationData = preferredNodeLocationData } + // NOTE: The below constructors could be consolidated using default arguments. Due to + // Scala bug SI-8479, however, this causes the compile step to fail when generating docs. + // Until we have a good workaround for that bug the constructors remain broken out. + + /** + * Alternative constructor that allows setting common Spark properties directly + * + * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). + * @param appName A name for your application, to display on the cluster web UI. + */ + private[spark] def this(master: String, appName: String) = + this(master, appName, null, Nil, Map(), Map()) + + /** + * Alternative constructor that allows setting common Spark properties directly + * + * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). + * @param appName A name for your application, to display on the cluster web UI. + * @param sparkHome Location where Spark is installed on cluster nodes. + */ + private[spark] def this(master: String, appName: String, sparkHome: String) = + this(master, appName, sparkHome, Nil, Map(), Map()) + + /** + * Alternative constructor that allows setting common Spark properties directly + * + * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). + * @param appName A name for your application, to display on the cluster web UI. + * @param sparkHome Location where Spark is installed on cluster nodes. + * @param jars Collection of JARs to send to the cluster. These can be paths on the local file + * system or HDFS, HTTP, HTTPS, or FTP URLs. + */ + private[spark] def this(master: String, appName: String, sparkHome: String, jars: Seq[String]) = + this(master, appName, sparkHome, jars, Map(), Map()) + private[spark] val conf = config.clone() /** @@ -189,7 +238,7 @@ class SparkContext( jars.foreach(addJar) } - def warnSparkMem(value: String): String = { + private def warnSparkMem(value: String): String = { logWarning("Using SPARK_MEM to set amount of memory to use per executor process is " + "deprecated, please use spark.executor.memory instead.") value @@ -653,6 +702,9 @@ class SparkContext( def union[T: ClassTag](first: RDD[T], rest: RDD[T]*): RDD[T] = new UnionRDD(this, Seq(first) ++ rest) + /** Get an RDD that has no partitions or elements. */ + def emptyRDD[T: ClassTag] = new EmptyRDD[T](this) + // Methods for creating shared variables /** @@ -716,6 +768,11 @@ class SparkContext( postEnvironmentUpdate() } + /** + * :: DeveloperApi :: + * Register a listener to receive up-calls from events that happen during execution. + */ + @DeveloperApi def addSparkListener(listener: SparkListener) { listenerBus.addListener(listener) } @@ -1021,8 +1078,10 @@ class SparkContext( } /** + * :: DeveloperApi :: * Run a job that can return approximate results. */ + @DeveloperApi def runApproximateJob[T, U, R]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, @@ -1040,6 +1099,7 @@ class SparkContext( /** * Submit a job for execution and return a FutureJob holding the result. */ + @Experimental def submitJob[T, U, R]( rdd: RDD[T], processPartition: Iterator[T] => U, diff --git a/core/src/main/scala/org/apache/spark/SparkEnv.scala b/core/src/main/scala/org/apache/spark/SparkEnv.scala index 9ea123f174b95..915315ed74436 100644 --- a/core/src/main/scala/org/apache/spark/SparkEnv.scala +++ b/core/src/main/scala/org/apache/spark/SparkEnv.scala @@ -25,6 +25,7 @@ import scala.util.Properties import akka.actor._ import com.google.common.collect.MapMaker +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.api.python.PythonWorkerFactory import org.apache.spark.broadcast.BroadcastManager import org.apache.spark.metrics.MetricsSystem @@ -35,13 +36,18 @@ import org.apache.spark.storage._ import org.apache.spark.util.{AkkaUtils, Utils} /** + * :: DeveloperApi :: * Holds all the runtime environment objects for a running Spark instance (either master or worker), * including the serializer, Akka actor system, block manager, map output tracker, etc. Currently * Spark code finds the SparkEnv through a thread-local variable, so each thread that accesses these * objects needs to have the right SparkEnv set. You can get the current environment with * SparkEnv.get (e.g. after creating a SparkContext) and set it with SparkEnv.set. + * + * NOTE: This is not intended for external use. This is exposed for Shark and may be made private + * in a future release. */ -class SparkEnv private[spark] ( +@DeveloperApi +class SparkEnv ( val executorId: String, val actorSystem: ActorSystem, val serializer: Serializer, diff --git a/core/src/main/scala/org/apache/spark/TaskContext.scala b/core/src/main/scala/org/apache/spark/TaskContext.scala index be53ca2968cfb..dc5a19ecd738e 100644 --- a/core/src/main/scala/org/apache/spark/TaskContext.scala +++ b/core/src/main/scala/org/apache/spark/TaskContext.scala @@ -19,8 +19,14 @@ package org.apache.spark import scala.collection.mutable.ArrayBuffer +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.executor.TaskMetrics +/** + * :: DeveloperApi :: + * Contextual information about a task which can be read or mutated during execution. + */ +@DeveloperApi class TaskContext( val stageId: Int, val partitionId: Int, diff --git a/core/src/main/scala/org/apache/spark/TaskEndReason.scala b/core/src/main/scala/org/apache/spark/TaskEndReason.scala index f1a753b6ab8a9..a3074916d13e7 100644 --- a/core/src/main/scala/org/apache/spark/TaskEndReason.scala +++ b/core/src/main/scala/org/apache/spark/TaskEndReason.scala @@ -17,29 +17,35 @@ package org.apache.spark +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.executor.TaskMetrics import org.apache.spark.storage.BlockManagerId /** + * :: DeveloperApi :: * Various possible reasons why a task ended. The low-level TaskScheduler is supposed to retry * tasks several times for "ephemeral" failures, and only report back failures that require some * old stages to be resubmitted, such as shuffle map fetch failures. */ -private[spark] sealed trait TaskEndReason +@DeveloperApi +sealed trait TaskEndReason -private[spark] case object Success extends TaskEndReason +@DeveloperApi +case object Success extends TaskEndReason -private[spark] +@DeveloperApi case object Resubmitted extends TaskEndReason // Task was finished earlier but we've now lost it -private[spark] case class FetchFailed( +@DeveloperApi +case class FetchFailed( bmAddress: BlockManagerId, shuffleId: Int, mapId: Int, reduceId: Int) extends TaskEndReason -private[spark] case class ExceptionFailure( +@DeveloperApi +case class ExceptionFailure( className: String, description: String, stackTrace: Array[StackTraceElement], @@ -47,21 +53,28 @@ private[spark] case class ExceptionFailure( extends TaskEndReason /** + * :: DeveloperApi :: * The task finished successfully, but the result was lost from the executor's block manager before * it was fetched. */ -private[spark] case object TaskResultLost extends TaskEndReason +@DeveloperApi +case object TaskResultLost extends TaskEndReason -private[spark] case object TaskKilled extends TaskEndReason +@DeveloperApi +case object TaskKilled extends TaskEndReason /** + * :: DeveloperApi :: * The task failed because the executor that it was running on was lost. This may happen because * the task crashed the JVM. */ -private[spark] case object ExecutorLostFailure extends TaskEndReason +@DeveloperApi +case object ExecutorLostFailure extends TaskEndReason /** + * :: DeveloperApi :: * We don't know why the task ended -- for example, because of a ClassNotFound exception when * deserializing the task result. */ -private[spark] case object UnknownReason extends TaskEndReason +@DeveloperApi +case object UnknownReason extends TaskEndReason diff --git a/core/src/test/scala/org/apache/spark/TestUtils.scala b/core/src/main/scala/org/apache/spark/TestUtils.scala similarity index 84% rename from core/src/test/scala/org/apache/spark/TestUtils.scala rename to core/src/main/scala/org/apache/spark/TestUtils.scala index 1611d09652d40..4597595a838e3 100644 --- a/core/src/test/scala/org/apache/spark/TestUtils.scala +++ b/core/src/main/scala/org/apache/spark/TestUtils.scala @@ -26,7 +26,14 @@ import scala.collection.JavaConversions._ import javax.tools.{JavaFileObject, SimpleJavaFileObject, ToolProvider} import com.google.common.io.Files -object TestUtils { +/** + * Utilities for tests. Included in main codebase since it's used by multiple + * projects. + * + * TODO: See if we can move this to the test codebase by specifying + * test dependencies between projects. + */ +private[spark] object TestUtils { /** * Create a jar that defines classes with the given names. @@ -34,13 +41,14 @@ object TestUtils { * Note: if this is used during class loader tests, class names should be unique * in order to avoid interference between tests. */ - def createJarWithClasses(classNames: Seq[String]): URL = { + def createJarWithClasses(classNames: Seq[String], value: String = ""): URL = { val tempDir = Files.createTempDir() - val files = for (name <- classNames) yield createCompiledClass(name, tempDir) + val files = for (name <- classNames) yield createCompiledClass(name, tempDir, value) val jarFile = new File(tempDir, "testJar-%s.jar".format(System.currentTimeMillis())) createJar(files, jarFile) } + /** * Create a jar file that contains this set of files. All files will be located at the root * of the jar. @@ -80,9 +88,11 @@ object TestUtils { } /** Creates a compiled class with the given name. Class file will be placed in destDir. */ - def createCompiledClass(className: String, destDir: File): File = { + def createCompiledClass(className: String, destDir: File, value: String = ""): File = { val compiler = ToolProvider.getSystemJavaCompiler - val sourceFile = new JavaSourceFromString(className, s"public class $className {}") + val sourceFile = new JavaSourceFromString(className, + "public class " + className + " { @Override public String toString() { " + + "return \"" + value + "\";}}") // Calling this outputs a class file in pwd. It's easier to just rename the file than // build a custom FileManager that controls the output location. diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala b/core/src/main/scala/org/apache/spark/annotation/AlphaComponent.java similarity index 68% rename from mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala rename to core/src/main/scala/org/apache/spark/annotation/AlphaComponent.java index e4ef3c58e8680..af01fb7cfbd04 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala +++ b/core/src/main/scala/org/apache/spark/annotation/AlphaComponent.java @@ -15,16 +15,12 @@ * limitations under the License. */ -package org.apache.spark.mllib.linalg +package org.apache.spark.annotation; -import org.apache.spark.rdd.RDD +import java.lang.annotation.*; - -/** - * Class that represents a dense matrix - * - * @param rows RDD of rows - * @param m number of rows - * @param n number of columns - */ -case class TallSkinnyDenseMatrix(val rows: RDD[MatrixRow], val m: Int, val n: Int) +/** A new component of Spark which may have unstable API's. */ +@Retention(RetentionPolicy.RUNTIME) +@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER, + ElementType.CONSTRUCTOR, ElementType.LOCAL_VARIABLE, ElementType.PACKAGE}) +public @interface AlphaComponent {} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixEntry.scala b/core/src/main/scala/org/apache/spark/annotation/DeveloperApi.java similarity index 64% rename from mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixEntry.scala rename to core/src/main/scala/org/apache/spark/annotation/DeveloperApi.java index 416996fcbe760..5d546e7a63985 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixEntry.scala +++ b/core/src/main/scala/org/apache/spark/annotation/DeveloperApi.java @@ -15,13 +15,16 @@ * limitations under the License. */ -package org.apache.spark.mllib.linalg +package org.apache.spark.annotation; + +import java.lang.annotation.*; /** - * Class that represents an entry in a sparse matrix of doubles. + * A lower-level, unstable API intended for developers. * - * @param i row index (0 indexing used) - * @param j column index (0 indexing used) - * @param mval value of entry in matrix + * Developer API's might change or be removed in minor versions of Spark. */ -case class MatrixEntry(val i: Int, val j: Int, val mval: Double) +@Retention(RetentionPolicy.RUNTIME) +@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER, + ElementType.CONSTRUCTOR, ElementType.LOCAL_VARIABLE, ElementType.PACKAGE}) +public @interface DeveloperApi {} diff --git a/core/src/main/scala/org/apache/spark/annotation/Experimental.java b/core/src/main/scala/org/apache/spark/annotation/Experimental.java new file mode 100644 index 0000000000000..306b1418d8d0a --- /dev/null +++ b/core/src/main/scala/org/apache/spark/annotation/Experimental.java @@ -0,0 +1,31 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.annotation; + +import java.lang.annotation.*; + +/** + * An experimental user-facing API. + * + * Experimental API's might change or be removed in minor versions of Spark, or be adopted as + * first-class Spark API's. + */ +@Retention(RetentionPolicy.RUNTIME) +@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER, + ElementType.CONSTRUCTOR, ElementType.LOCAL_VARIABLE, ElementType.PACKAGE}) +public @interface Experimental {} diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaDoubleRDD.scala b/core/src/main/scala/org/apache/spark/api/java/JavaDoubleRDD.scala index f816bb43a5b44..537f410b0ca26 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaDoubleRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaDoubleRDD.scala @@ -23,6 +23,7 @@ import scala.reflect.ClassTag import org.apache.spark.Partitioner import org.apache.spark.SparkContext.doubleRDDToDoubleRDDFunctions +import org.apache.spark.annotation.Experimental import org.apache.spark.api.java.function.{Function => JFunction} import org.apache.spark.partial.{BoundedDouble, PartialResult} import org.apache.spark.rdd.RDD @@ -184,14 +185,26 @@ class JavaDoubleRDD(val srdd: RDD[scala.Double]) extends JavaRDDLike[JDouble, Ja def meanApprox(timeout: Long, confidence: JDouble): PartialResult[BoundedDouble] = srdd.meanApprox(timeout, confidence) - /** (Experimental) Approximate operation to return the mean within a timeout. */ + /** + * :: Experimental :: + * Approximate operation to return the mean within a timeout. + */ + @Experimental def meanApprox(timeout: Long): PartialResult[BoundedDouble] = srdd.meanApprox(timeout) - /** (Experimental) Approximate operation to return the sum within a timeout. */ + /** + * :: Experimental :: + * Approximate operation to return the sum within a timeout. + */ + @Experimental def sumApprox(timeout: Long, confidence: JDouble): PartialResult[BoundedDouble] = srdd.sumApprox(timeout, confidence) - /** (Experimental) Approximate operation to return the sum within a timeout. */ + /** + * :: Experimental :: + * Approximate operation to return the sum within a timeout. + */ + @Experimental def sumApprox(timeout: Long): PartialResult[BoundedDouble] = srdd.sumApprox(timeout) /** diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala b/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala index 9596dbaf75488..a41c7dbda2afc 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala @@ -18,6 +18,7 @@ package org.apache.spark.api.java import java.util.{Comparator, List => JList} +import java.lang.{Iterable => JIterable} import scala.collection.JavaConversions._ import scala.reflect.ClassTag @@ -26,11 +27,12 @@ import com.google.common.base.Optional import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.mapred.{JobConf, OutputFormat} -import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat, Job} +import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat} import org.apache.spark.{HashPartitioner, Partitioner} import org.apache.spark.Partitioner._ import org.apache.spark.SparkContext.rddToPairRDDFunctions +import org.apache.spark.annotation.Experimental import org.apache.spark.api.java.JavaSparkContext.fakeClassTag import org.apache.spark.api.java.function.{Function => JFunction, Function2 => JFunction2, PairFunction} import org.apache.spark.partial.{BoundedDouble, PartialResult} @@ -200,16 +202,20 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) def countByKey(): java.util.Map[K, Long] = mapAsJavaMap(rdd.countByKey()) /** - * (Experimental) Approximate version of countByKey that can return a partial result if it does + * :: Experimental :: + * Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ + @Experimental def countByKeyApprox(timeout: Long): PartialResult[java.util.Map[K, BoundedDouble]] = rdd.countByKeyApprox(timeout).map(mapAsJavaMap) /** - * (Experimental) Approximate version of countByKey that can return a partial result if it does + * :: Experimental :: + * Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ + @Experimental def countByKeyApprox(timeout: Long, confidence: Double = 0.95) : PartialResult[java.util.Map[K, BoundedDouble]] = rdd.countByKeyApprox(timeout, confidence).map(mapAsJavaMap) @@ -250,14 +256,14 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * Group the values for each key in the RDD into a single sequence. Allows controlling the * partitioning of the resulting key-value pair RDD by passing a Partitioner. */ - def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JList[V]] = + def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(partitioner))) /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with into `numPartitions` partitions. */ - def groupByKey(numPartitions: Int): JavaPairRDD[K, JList[V]] = + def groupByKey(numPartitions: Int): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(numPartitions))) /** @@ -367,7 +373,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with the existing partitioner/parallelism level. */ - def groupByKey(): JavaPairRDD[K, JList[V]] = + def groupByKey(): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey())) /** @@ -462,7 +468,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: JavaPairRDD[K, W], partitioner: Partitioner) - : JavaPairRDD[K, (JList[V], JList[W])] = + : JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other, partitioner))) /** @@ -470,14 +476,14 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], - partitioner: Partitioner): JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] = + partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, partitioner))) /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ - def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JList[V], JList[W])] = + def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other))) /** @@ -485,7 +491,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2]) - : JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] = + : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2))) /** @@ -493,7 +499,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: JavaPairRDD[K, W], numPartitions: Int) - : JavaPairRDD[K, (JList[V], JList[W])] = + : JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other, numPartitions))) /** @@ -501,16 +507,16 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], numPartitions: Int) - : JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] = + : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, numPartitions))) /** Alias for cogroup. */ - def groupWith[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JList[V], JList[W])] = + def groupWith[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.groupWith(other))) /** Alias for cogroup. */ def groupWith[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2]) - : JavaPairRDD[K, (JList[V], JList[W1], JList[W2])] = + : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.groupWith(other1, other2))) /** @@ -695,21 +701,22 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) object JavaPairRDD { private[spark] - def groupByResultToJava[K: ClassTag, T](rdd: RDD[(K, Seq[T])]): RDD[(K, JList[T])] = { - rddToPairRDDFunctions(rdd).mapValues(seqAsJavaList) + def groupByResultToJava[K: ClassTag, T](rdd: RDD[(K, Iterable[T])]): RDD[(K, JIterable[T])] = { + rddToPairRDDFunctions(rdd).mapValues(asJavaIterable) } private[spark] def cogroupResultToJava[K: ClassTag, V, W]( - rdd: RDD[(K, (Seq[V], Seq[W]))]): RDD[(K, (JList[V], JList[W]))] = { - rddToPairRDDFunctions(rdd).mapValues(x => (seqAsJavaList(x._1), seqAsJavaList(x._2))) + rdd: RDD[(K, (Iterable[V], Iterable[W]))]): RDD[(K, (JIterable[V], JIterable[W]))] = { + rddToPairRDDFunctions(rdd).mapValues(x => (asJavaIterable(x._1), asJavaIterable(x._2))) } private[spark] def cogroupResult2ToJava[K: ClassTag, V, W1, W2]( - rdd: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))]): RDD[(K, (JList[V], JList[W1], JList[W2]))] = { + rdd: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]) + : RDD[(K, (JIterable[V], JIterable[W1], JIterable[W2]))] = { rddToPairRDDFunctions(rdd) - .mapValues(x => (seqAsJavaList(x._1), seqAsJavaList(x._2), seqAsJavaList(x._3))) + .mapValues(x => (asJavaIterable(x._1), asJavaIterable(x._2), asJavaIterable(x._3))) } def fromRDD[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]): JavaPairRDD[K, V] = { diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaRDDLike.scala b/core/src/main/scala/org/apache/spark/api/java/JavaRDDLike.scala index 6e8ec8e0c7629..725c423a53e35 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaRDDLike.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaRDDLike.scala @@ -17,7 +17,7 @@ package org.apache.spark.api.java -import java.util.{Comparator, Iterator => JIterator, List => JList} +import java.util.{Comparator, List => JList, Iterator => JIterator} import java.lang.{Iterable => JIterable} import scala.collection.JavaConversions._ @@ -27,6 +27,7 @@ import com.google.common.base.Optional import org.apache.hadoop.io.compress.CompressionCodec import org.apache.spark.{Partition, SparkContext, TaskContext} +import org.apache.spark.annotation.Experimental import org.apache.spark.api.java.JavaPairRDD._ import org.apache.spark.api.java.JavaSparkContext.fakeClassTag import org.apache.spark.api.java.function.{Function => JFunction, Function2 => JFunction2, _} @@ -204,7 +205,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ - def groupBy[K](f: JFunction[T, K]): JavaPairRDD[K, JList[T]] = { + def groupBy[K](f: JFunction[T, K]): JavaPairRDD[K, JIterable[T]] = { implicit val ctagK: ClassTag[K] = fakeClassTag implicit val ctagV: ClassTag[JList[T]] = fakeClassTag JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f)(fakeClassTag))) @@ -214,7 +215,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ - def groupBy[K](f: JFunction[T, K], numPartitions: Int): JavaPairRDD[K, JList[T]] = { + def groupBy[K](f: JFunction[T, K], numPartitions: Int): JavaPairRDD[K, JIterable[T]] = { implicit val ctagK: ClassTag[K] = fakeClassTag implicit val ctagV: ClassTag[JList[T]] = fakeClassTag JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f, numPartitions)(fakeClassTag[K]))) @@ -343,16 +344,20 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { def count(): Long = rdd.count() /** - * (Experimental) Approximate version of count() that returns a potentially incomplete result + * :: Experimental :: + * Approximate version of count() that returns a potentially incomplete result * within a timeout, even if not all tasks have finished. */ + @Experimental def countApprox(timeout: Long, confidence: Double): PartialResult[BoundedDouble] = rdd.countApprox(timeout, confidence) /** - * (Experimental) Approximate version of count() that returns a potentially incomplete result + * :: Experimental :: + * Approximate version of count() that returns a potentially incomplete result * within a timeout, even if not all tasks have finished. */ + @Experimental def countApprox(timeout: Long): PartialResult[BoundedDouble] = rdd.countApprox(timeout) diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala b/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala index a2855d4db1d2e..1e8242a2cbbce 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaSparkContext.scala @@ -89,7 +89,7 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork */ def this(master: String, appName: String, sparkHome: String, jars: Array[String], environment: JMap[String, String]) = - this(new SparkContext(master, appName, sparkHome, jars.toSeq, environment)) + this(new SparkContext(master, appName, sparkHome, jars.toSeq, environment, Map())) private[spark] val env = sc.env diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaUtils.scala b/core/src/main/scala/org/apache/spark/api/java/JavaUtils.scala index ecbf18849ad48..22810cb1c662d 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaUtils.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaUtils.scala @@ -19,7 +19,7 @@ package org.apache.spark.api.java import com.google.common.base.Optional -object JavaUtils { +private[spark] object JavaUtils { def optionToOptional[T](option: Option[T]): Optional[T] = option match { case Some(value) => Optional.of(value) diff --git a/core/src/main/scala/org/apache/spark/broadcast/BroadcastFactory.scala b/core/src/main/scala/org/apache/spark/broadcast/BroadcastFactory.scala index c7f7c59cfb449..8c8ce9b1691ac 100644 --- a/core/src/main/scala/org/apache/spark/broadcast/BroadcastFactory.scala +++ b/core/src/main/scala/org/apache/spark/broadcast/BroadcastFactory.scala @@ -16,16 +16,19 @@ */ package org.apache.spark.broadcast -import org.apache.spark.SecurityManager +import org.apache.spark.SecurityManager import org.apache.spark.SparkConf +import org.apache.spark.annotation.DeveloperApi /** - * An interface for all the broadcast implementations in Spark (to allow + * :: DeveloperApi :: + * An interface for all the broadcast implementations in Spark (to allow * multiple broadcast implementations). SparkContext uses a user-specified * BroadcastFactory implementation to instantiate a particular broadcast for the * entire Spark job. */ +@DeveloperApi trait BroadcastFactory { def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager): Unit def newBroadcast[T](value: T, isLocal: Boolean, id: Long): Broadcast[T] diff --git a/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterWebUI.scala b/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterWebUI.scala index bd75b2dfd0e07..01d9f52f4b7b4 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterWebUI.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterWebUI.scala @@ -59,7 +59,7 @@ class MasterWebUI(val master: Master, requestedPort: Int) extends Logging { def bind() { try { - serverInfo = Some(startJettyServer(host, port, handlers, master.conf)) + serverInfo = Some(startJettyServer("0.0.0.0", port, handlers, master.conf)) logInfo("Started Master web UI at http://%s:%d".format(host, boundPort)) } catch { case e: Exception => diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/ui/WorkerWebUI.scala b/core/src/main/scala/org/apache/spark/deploy/worker/ui/WorkerWebUI.scala index de76a5d5eb7bc..650f3da5ce3ff 100644 --- a/core/src/main/scala/org/apache/spark/deploy/worker/ui/WorkerWebUI.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/ui/WorkerWebUI.scala @@ -60,7 +60,7 @@ class WorkerWebUI(val worker: Worker, val workDir: File, requestedPort: Option[I def bind() { try { - serverInfo = Some(JettyUtils.startJettyServer(host, port, handlers, worker.conf)) + serverInfo = Some(JettyUtils.startJettyServer("0.0.0.0", port, handlers, worker.conf)) logInfo("Started Worker web UI at http://%s:%d".format(host, boundPort)) } catch { case e: Exception => diff --git a/core/src/main/scala/org/apache/spark/executor/Executor.scala b/core/src/main/scala/org/apache/spark/executor/Executor.scala index aecb069e4202b..c12bd922d40e4 100644 --- a/core/src/main/scala/org/apache/spark/executor/Executor.scala +++ b/core/src/main/scala/org/apache/spark/executor/Executor.scala @@ -291,15 +291,19 @@ private[spark] class Executor( * Create a ClassLoader for use in tasks, adding any JARs specified by the user or any classes * created by the interpreter to the search path */ - private def createClassLoader(): ExecutorURLClassLoader = { - val loader = Thread.currentThread().getContextClassLoader + private def createClassLoader(): MutableURLClassLoader = { + val loader = this.getClass.getClassLoader // For each of the jars in the jarSet, add them to the class loader. // We assume each of the files has already been fetched. val urls = currentJars.keySet.map { uri => new File(uri.split("/").last).toURI.toURL }.toArray - new ExecutorURLClassLoader(urls, loader) + val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false) + userClassPathFirst match { + case true => new ChildExecutorURLClassLoader(urls, loader) + case false => new ExecutorURLClassLoader(urls, loader) + } } /** @@ -310,11 +314,14 @@ private[spark] class Executor( val classUri = conf.get("spark.repl.class.uri", null) if (classUri != null) { logInfo("Using REPL class URI: " + classUri) + val userClassPathFirst: java.lang.Boolean = + conf.getBoolean("spark.files.userClassPathFirst", false) try { val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader") .asInstanceOf[Class[_ <: ClassLoader]] - val constructor = klass.getConstructor(classOf[String], classOf[ClassLoader]) - constructor.newInstance(classUri, parent) + val constructor = klass.getConstructor(classOf[String], classOf[ClassLoader], + classOf[Boolean]) + constructor.newInstance(classUri, parent, userClassPathFirst) } catch { case _: ClassNotFoundException => logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!") diff --git a/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala b/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala index 127f5e90f3e1a..0ed52cfe9df61 100644 --- a/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala +++ b/core/src/main/scala/org/apache/spark/executor/ExecutorSource.scala @@ -24,7 +24,7 @@ import org.apache.hadoop.fs.FileSystem import org.apache.spark.metrics.source.Source -class ExecutorSource(val executor: Executor, executorId: String) extends Source { +private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source { private def fileStats(scheme: String) : Option[FileSystem.Statistics] = FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption diff --git a/core/src/main/scala/org/apache/spark/executor/ExecutorURLClassLoader.scala b/core/src/main/scala/org/apache/spark/executor/ExecutorURLClassLoader.scala index f9bfe8ed2f5ba..208e77073fd03 100644 --- a/core/src/main/scala/org/apache/spark/executor/ExecutorURLClassLoader.scala +++ b/core/src/main/scala/org/apache/spark/executor/ExecutorURLClassLoader.scala @@ -19,13 +19,56 @@ package org.apache.spark.executor import java.net.{URLClassLoader, URL} +import org.apache.spark.util.ParentClassLoader + /** * The addURL method in URLClassLoader is protected. We subclass it to make this accessible. + * We also make changes so user classes can come before the default classes. */ + +private[spark] trait MutableURLClassLoader extends ClassLoader { + def addURL(url: URL) + def getURLs: Array[URL] +} + +private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader) + extends MutableURLClassLoader { + + private object userClassLoader extends URLClassLoader(urls, null){ + override def addURL(url: URL) { + super.addURL(url) + } + override def findClass(name: String): Class[_] = { + super.findClass(name) + } + } + + private val parentClassLoader = new ParentClassLoader(parent) + + override def findClass(name: String): Class[_] = { + try { + userClassLoader.findClass(name) + } catch { + case e: ClassNotFoundException => { + parentClassLoader.loadClass(name) + } + } + } + + def addURL(url: URL) { + userClassLoader.addURL(url) + } + + def getURLs() = { + userClassLoader.getURLs() + } +} + private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader) - extends URLClassLoader(urls, parent) { + extends URLClassLoader(urls, parent) with MutableURLClassLoader { override def addURL(url: URL) { super.addURL(url) } } + diff --git a/core/src/main/scala/org/apache/spark/executor/TaskMetrics.scala b/core/src/main/scala/org/apache/spark/executor/TaskMetrics.scala index 88625e79a5c68..e4f02a4be0b97 100644 --- a/core/src/main/scala/org/apache/spark/executor/TaskMetrics.scala +++ b/core/src/main/scala/org/apache/spark/executor/TaskMetrics.scala @@ -17,8 +17,14 @@ package org.apache.spark.executor +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.storage.{BlockId, BlockStatus} +/** + * :: DeveloperApi :: + * Metrics tracked during the execution of a task. + */ +@DeveloperApi class TaskMetrics extends Serializable { /** * Host's name the task runs on @@ -77,11 +83,16 @@ class TaskMetrics extends Serializable { var updatedBlocks: Option[Seq[(BlockId, BlockStatus)]] = None } -object TaskMetrics { - private[spark] def empty(): TaskMetrics = new TaskMetrics +private[spark] object TaskMetrics { + def empty(): TaskMetrics = new TaskMetrics } +/** + * :: DeveloperApi :: + * Metrics pertaining to shuffle data read in a given task. + */ +@DeveloperApi class ShuffleReadMetrics extends Serializable { /** * Absolute time when this task finished reading shuffle data @@ -116,6 +127,11 @@ class ShuffleReadMetrics extends Serializable { var remoteBytesRead: Long = _ } +/** + * :: DeveloperApi :: + * Metrics pertaining to shuffle data written in a given task. + */ +@DeveloperApi class ShuffleWriteMetrics extends Serializable { /** * Number of bytes written for the shuffle by this task diff --git a/core/src/main/scala/org/apache/spark/io/CompressionCodec.scala b/core/src/main/scala/org/apache/spark/io/CompressionCodec.scala index 059e58824c39b..e1a5ee316bb69 100644 --- a/core/src/main/scala/org/apache/spark/io/CompressionCodec.scala +++ b/core/src/main/scala/org/apache/spark/io/CompressionCodec.scala @@ -23,11 +23,18 @@ import com.ning.compress.lzf.{LZFInputStream, LZFOutputStream} import org.xerial.snappy.{SnappyInputStream, SnappyOutputStream} import org.apache.spark.SparkConf +import org.apache.spark.annotation.DeveloperApi /** + * :: DeveloperApi :: * CompressionCodec allows the customization of choosing different compression implementations * to be used in block storage. + * + * Note: The wire protocol for a codec is not guaranteed compatible across versions of Spark. + * This is intended for use as an internal compression utility within a single + * Spark application. */ +@DeveloperApi trait CompressionCodec { def compressedOutputStream(s: OutputStream): OutputStream @@ -52,8 +59,14 @@ private[spark] object CompressionCodec { /** + * :: DeveloperApi :: * LZF implementation of [[org.apache.spark.io.CompressionCodec]]. + * + * Note: The wire protocol for this codec is not guaranteed to be compatible across versions + * of Spark. This is intended for use as an internal compression utility within a single Spark + * application. */ +@DeveloperApi class LZFCompressionCodec(conf: SparkConf) extends CompressionCodec { override def compressedOutputStream(s: OutputStream): OutputStream = { @@ -65,9 +78,15 @@ class LZFCompressionCodec(conf: SparkConf) extends CompressionCodec { /** + * :: DeveloperApi :: * Snappy implementation of [[org.apache.spark.io.CompressionCodec]]. * Block size can be configured by spark.io.compression.snappy.block.size. + * + * Note: The wire protocol for this codec is not guaranteed to be compatible across versions + * of Spark. This is intended for use as an internal compression utility within a single Spark + * application. */ +@DeveloperApi class SnappyCompressionCodec(conf: SparkConf) extends CompressionCodec { override def compressedOutputStream(s: OutputStream): OutputStream = { diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/ConsoleSink.scala b/core/src/main/scala/org/apache/spark/metrics/sink/ConsoleSink.scala index 64eac73605388..05852f1f98993 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/ConsoleSink.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/ConsoleSink.scala @@ -25,7 +25,7 @@ import com.codahale.metrics.{ConsoleReporter, MetricRegistry} import org.apache.spark.SecurityManager import org.apache.spark.metrics.MetricsSystem -class ConsoleSink(val property: Properties, val registry: MetricRegistry, +private[spark] class ConsoleSink(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink { val CONSOLE_DEFAULT_PERIOD = 10 val CONSOLE_DEFAULT_UNIT = "SECONDS" diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/CsvSink.scala b/core/src/main/scala/org/apache/spark/metrics/sink/CsvSink.scala index 544848d4150b6..42c1200926fea 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/CsvSink.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/CsvSink.scala @@ -26,7 +26,7 @@ import com.codahale.metrics.{CsvReporter, MetricRegistry} import org.apache.spark.SecurityManager import org.apache.spark.metrics.MetricsSystem -class CsvSink(val property: Properties, val registry: MetricRegistry, +private[spark] class CsvSink(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink { val CSV_KEY_PERIOD = "period" val CSV_KEY_UNIT = "unit" diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/GraphiteSink.scala b/core/src/main/scala/org/apache/spark/metrics/sink/GraphiteSink.scala index 7f0a2fd16fa99..aeb4ad44a0647 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/GraphiteSink.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/GraphiteSink.scala @@ -27,7 +27,7 @@ import com.codahale.metrics.graphite.{Graphite, GraphiteReporter} import org.apache.spark.SecurityManager import org.apache.spark.metrics.MetricsSystem -class GraphiteSink(val property: Properties, val registry: MetricRegistry, +private[spark] class GraphiteSink(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink { val GRAPHITE_DEFAULT_PERIOD = 10 val GRAPHITE_DEFAULT_UNIT = "SECONDS" diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/JmxSink.scala b/core/src/main/scala/org/apache/spark/metrics/sink/JmxSink.scala index 3b5edd5c376f0..ed27234b4e760 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/JmxSink.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/JmxSink.scala @@ -22,7 +22,7 @@ import java.util.Properties import com.codahale.metrics.{JmxReporter, MetricRegistry} import org.apache.spark.SecurityManager -class JmxSink(val property: Properties, val registry: MetricRegistry, +private[spark] class JmxSink(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink { val reporter: JmxReporter = JmxReporter.forRegistry(registry).build() diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/MetricsServlet.scala b/core/src/main/scala/org/apache/spark/metrics/sink/MetricsServlet.scala index 854b52c510e3d..571539ba5e467 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/MetricsServlet.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/MetricsServlet.scala @@ -30,7 +30,7 @@ import org.eclipse.jetty.servlet.ServletContextHandler import org.apache.spark.SecurityManager import org.apache.spark.ui.JettyUtils._ -class MetricsServlet(val property: Properties, val registry: MetricRegistry, +private[spark] class MetricsServlet(val property: Properties, val registry: MetricRegistry, securityMgr: SecurityManager) extends Sink { val SERVLET_KEY_PATH = "path" val SERVLET_KEY_SAMPLE = "sample" diff --git a/core/src/main/scala/org/apache/spark/metrics/sink/Sink.scala b/core/src/main/scala/org/apache/spark/metrics/sink/Sink.scala index 3a739aa563eae..6f2b5a06027ea 100644 --- a/core/src/main/scala/org/apache/spark/metrics/sink/Sink.scala +++ b/core/src/main/scala/org/apache/spark/metrics/sink/Sink.scala @@ -17,7 +17,7 @@ package org.apache.spark.metrics.sink -trait Sink { +private[spark] trait Sink { def start: Unit def stop: Unit } diff --git a/core/src/main/scala/org/apache/spark/metrics/source/JvmSource.scala b/core/src/main/scala/org/apache/spark/metrics/source/JvmSource.scala index 75cb2b8973aa1..f865f9648a91e 100644 --- a/core/src/main/scala/org/apache/spark/metrics/source/JvmSource.scala +++ b/core/src/main/scala/org/apache/spark/metrics/source/JvmSource.scala @@ -20,7 +20,7 @@ package org.apache.spark.metrics.source import com.codahale.metrics.MetricRegistry import com.codahale.metrics.jvm.{GarbageCollectorMetricSet, MemoryUsageGaugeSet} -class JvmSource extends Source { +private[spark] class JvmSource extends Source { val sourceName = "jvm" val metricRegistry = new MetricRegistry() diff --git a/core/src/main/scala/org/apache/spark/metrics/source/Source.scala b/core/src/main/scala/org/apache/spark/metrics/source/Source.scala index 3fee55cc6dcd5..1dda2cd83b2a9 100644 --- a/core/src/main/scala/org/apache/spark/metrics/source/Source.scala +++ b/core/src/main/scala/org/apache/spark/metrics/source/Source.scala @@ -19,7 +19,7 @@ package org.apache.spark.metrics.source import com.codahale.metrics.MetricRegistry -trait Source { +private[spark] trait Source { def sourceName: String def metricRegistry: MetricRegistry } diff --git a/core/src/main/scala/org/apache/spark/package.scala b/core/src/main/scala/org/apache/spark/package.scala index 2625a7f6a575a..59bbb1171f239 100644 --- a/core/src/main/scala/org/apache/spark/package.scala +++ b/core/src/main/scala/org/apache/spark/package.scala @@ -32,7 +32,16 @@ package org.apache * * Java programmers should reference the [[spark.api.java]] package * for Spark programming APIs in Java. + * + * Classes and methods marked with + * Experimental are user-facing features which have not been officially adopted by the + * Spark project. These are subject to change or removal in minor releases. + * + * Classes and methods marked with + * Developer API are intended for advanced users want to extend Spark through lower + * level interfaces. These are subject to changes or removal in minor releases. */ + package object spark { // For package docs only } diff --git a/core/src/main/scala/org/apache/spark/partial/BoundedDouble.scala b/core/src/main/scala/org/apache/spark/partial/BoundedDouble.scala index 5f4450859cc9b..aed0353344427 100644 --- a/core/src/main/scala/org/apache/spark/partial/BoundedDouble.scala +++ b/core/src/main/scala/org/apache/spark/partial/BoundedDouble.scala @@ -17,9 +17,13 @@ package org.apache.spark.partial +import org.apache.spark.annotation.Experimental + /** - * A Double with error bars on it. + * :: Experimental :: + * A Double value with error bars and associated confidence. */ +@Experimental class BoundedDouble(val mean: Double, val confidence: Double, val low: Double, val high: Double) { override def toString(): String = "[%.3f, %.3f]".format(low, high) } diff --git a/core/src/main/scala/org/apache/spark/partial/PartialResult.scala b/core/src/main/scala/org/apache/spark/partial/PartialResult.scala index 812368e04ac0d..eade07fbcbe37 100644 --- a/core/src/main/scala/org/apache/spark/partial/PartialResult.scala +++ b/core/src/main/scala/org/apache/spark/partial/PartialResult.scala @@ -17,6 +17,9 @@ package org.apache.spark.partial +import org.apache.spark.annotation.Experimental + +@Experimental class PartialResult[R](initialVal: R, isFinal: Boolean) { private var finalValue: Option[R] = if (isFinal) Some(initialVal) else None private var failure: Option[Exception] = None diff --git a/core/src/main/scala/org/apache/spark/rdd/AsyncRDDActions.scala b/core/src/main/scala/org/apache/spark/rdd/AsyncRDDActions.scala index d1c74a5063510..aed951a40b40c 100644 --- a/core/src/main/scala/org/apache/spark/rdd/AsyncRDDActions.scala +++ b/core/src/main/scala/org/apache/spark/rdd/AsyncRDDActions.scala @@ -24,11 +24,14 @@ import scala.concurrent.ExecutionContext.Implicits.global import scala.reflect.ClassTag import org.apache.spark.{ComplexFutureAction, FutureAction, Logging} +import org.apache.spark.annotation.Experimental /** + * :: Experimental :: * A set of asynchronous RDD actions available through an implicit conversion. * Import `org.apache.spark.SparkContext._` at the top of your program to use these functions. */ +@Experimental class AsyncRDDActions[T: ClassTag](self: RDD[T]) extends Serializable with Logging { /** diff --git a/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala b/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala index 9aa454a5c8b88..c6e79557f08a1 100644 --- a/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala @@ -23,6 +23,7 @@ import scala.collection.mutable.ArrayBuffer import org.apache.spark.{InterruptibleIterator, Partition, Partitioner, SparkEnv, TaskContext} import org.apache.spark.{Dependency, OneToOneDependency, ShuffleDependency} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.collection.{ExternalAppendOnlyMap, AppendOnlyMap} import org.apache.spark.serializer.Serializer @@ -51,12 +52,17 @@ private[spark] class CoGroupPartition(idx: Int, val deps: Array[CoGroupSplitDep] } /** + * :: DeveloperApi :: * A RDD that cogroups its parents. For each key k in parent RDDs, the resulting RDD contains a * tuple with the list of values for that key. * + * Note: This is an internal API. We recommend users use RDD.coGroup(...) instead of + * instantiating this directly. + * @param rdds parent RDDs. - * @param part partitioner used to partition the shuffle output. + * @param part partitioner used to partition the shuffle output */ +@DeveloperApi class CoGroupedRDD[K](@transient var rdds: Seq[RDD[_ <: Product2[K, _]]], part: Partitioner) extends RDD[(K, Seq[Seq[_]])](rdds.head.context, Nil) { diff --git a/core/src/main/scala/org/apache/spark/rdd/CoalescedRDD.scala b/core/src/main/scala/org/apache/spark/rdd/CoalescedRDD.scala index 4e82b51313bf0..44401a663440c 100644 --- a/core/src/main/scala/org/apache/spark/rdd/CoalescedRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/CoalescedRDD.scala @@ -32,7 +32,7 @@ import org.apache.spark._ * @param parentsIndices list of indices in the parent that have been coalesced into this partition * @param preferredLocation the preferred location for this partition */ -case class CoalescedRDDPartition( +private[spark] case class CoalescedRDDPartition( index: Int, @transient rdd: RDD[_], parentsIndices: Array[Int], @@ -70,7 +70,7 @@ case class CoalescedRDDPartition( * @param maxPartitions number of desired partitions in the coalesced RDD * @param balanceSlack used to trade-off balance and locality. 1.0 is all locality, 0 is all balance */ -class CoalescedRDD[T: ClassTag]( +private[spark] class CoalescedRDD[T: ClassTag]( @transient var prev: RDD[T], maxPartitions: Int, balanceSlack: Double = 0.10) diff --git a/core/src/main/scala/org/apache/spark/rdd/DoubleRDDFunctions.scala b/core/src/main/scala/org/apache/spark/rdd/DoubleRDDFunctions.scala index a7b6b3b5146ce..2306c9736b334 100644 --- a/core/src/main/scala/org/apache/spark/rdd/DoubleRDDFunctions.scala +++ b/core/src/main/scala/org/apache/spark/rdd/DoubleRDDFunctions.scala @@ -17,6 +17,7 @@ package org.apache.spark.rdd +import org.apache.spark.annotation.Experimental import org.apache.spark.{TaskContext, Logging} import org.apache.spark.partial.BoundedDouble import org.apache.spark.partial.MeanEvaluator @@ -63,14 +64,22 @@ class DoubleRDDFunctions(self: RDD[Double]) extends Logging with Serializable { */ def sampleVariance(): Double = stats().sampleVariance - /** (Experimental) Approximate operation to return the mean within a timeout. */ + /** + * :: Experimental :: + * Approximate operation to return the mean within a timeout. + */ + @Experimental def meanApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = { val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns) val evaluator = new MeanEvaluator(self.partitions.size, confidence) self.context.runApproximateJob(self, processPartition, evaluator, timeout) } - /** (Experimental) Approximate operation to return the sum within a timeout. */ + /** + * :: Experimental :: + * Approximate operation to return the sum within a timeout. + */ + @Experimental def sumApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = { val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns) val evaluator = new SumEvaluator(self.partitions.size, confidence) diff --git a/core/src/main/scala/org/apache/spark/rdd/EmptyRDD.scala b/core/src/main/scala/org/apache/spark/rdd/EmptyRDD.scala index a84e5f9fd8ef8..a2d7e344cf1b2 100644 --- a/core/src/main/scala/org/apache/spark/rdd/EmptyRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/EmptyRDD.scala @@ -22,9 +22,9 @@ import scala.reflect.ClassTag import org.apache.spark.{Partition, SparkContext, TaskContext} /** - * An RDD that is empty, i.e. has no element in it. + * An RDD that has no partitions and no elements. */ -class EmptyRDD[T: ClassTag](sc: SparkContext) extends RDD[T](sc, Nil) { +private[spark] class EmptyRDD[T: ClassTag](sc: SparkContext) extends RDD[T](sc, Nil) { override def getPartitions: Array[Partition] = Array.empty diff --git a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala index 3af008bd72378..6811e1abb8b70 100644 --- a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala @@ -35,6 +35,7 @@ import org.apache.hadoop.mapred.TaskID import org.apache.hadoop.util.ReflectionUtils import org.apache.spark._ +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.broadcast.Broadcast import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.util.NextIterator @@ -70,9 +71,13 @@ private[spark] class HadoopPartition(rddId: Int, idx: Int, @transient s: InputSp } /** + * :: DeveloperApi :: * An RDD that provides core functionality for reading data stored in Hadoop (e.g., files in HDFS, * sources in HBase, or S3), using the older MapReduce API (`org.apache.hadoop.mapred`). * + * Note: Instantiating this class directly is not recommended, please use + * [[org.apache.spark.SparkContext.hadoopRDD()]] + * * @param sc The SparkContext to associate the RDD with. * @param broadcastedConf A general Hadoop Configuration, or a subclass of it. If the enclosed * variabe references an instance of JobConf, then that JobConf will be used for the Hadoop job. @@ -84,6 +89,7 @@ private[spark] class HadoopPartition(rddId: Int, idx: Int, @transient s: InputSp * @param valueClass Class of the value associated with the inputFormatClass. * @param minSplits Minimum number of Hadoop Splits (HadoopRDD partitions) to generate. */ +@DeveloperApi class HadoopRDD[K, V]( sc: SparkContext, broadcastedConf: Broadcast[SerializableWritable[Configuration]], diff --git a/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala b/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala index 1b503743ac117..a76a070b5b863 100644 --- a/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/JdbcRDD.scala @@ -27,7 +27,7 @@ import org.apache.spark.util.NextIterator private[spark] class JdbcPartition(idx: Int, val lower: Long, val upper: Long) extends Partition { override def index = idx } - +// TODO: Expose a jdbcRDD function in SparkContext and mark this as semi-private /** * An RDD that executes an SQL query on a JDBC connection and reads results. * For usage example, see test case JdbcRDDSuite. diff --git a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala index 461a749eac48b..2d8dfa5a1645a 100644 --- a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala @@ -25,6 +25,7 @@ import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.spark.{InterruptibleIterator, Logging, Partition, SerializableWritable, SparkContext, TaskContext} +import org.apache.spark.annotation.DeveloperApi private[spark] class NewHadoopPartition(rddId: Int, val index: Int, @transient rawSplit: InputSplit with Writable) @@ -36,15 +37,20 @@ class NewHadoopPartition(rddId: Int, val index: Int, @transient rawSplit: InputS } /** + * :: DeveloperApi :: * An RDD that provides core functionality for reading data stored in Hadoop (e.g., files in HDFS, * sources in HBase, or S3), using the new MapReduce API (`org.apache.hadoop.mapreduce`). * + * Note: Instantiating this class directly is not recommended, please use + * [[org.apache.spark.SparkContext.newAPIHadoopRDD()]] + * * @param sc The SparkContext to associate the RDD with. * @param inputFormatClass Storage format of the data to be read. * @param keyClass Class of the key associated with the inputFormatClass. * @param valueClass Class of the value associated with the inputFormatClass. * @param conf The Hadoop configuration. */ +@DeveloperApi class NewHadoopRDD[K, V]( sc : SparkContext, inputFormatClass: Class[_ <: InputFormat[K, V]], diff --git a/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala index 14386ff5b9127..343e4325c0ef0 100644 --- a/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala +++ b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala @@ -39,6 +39,7 @@ RecordWriter => NewRecordWriter, SparkHadoopMapReduceUtil} import org.apache.hadoop.mapreduce.lib.output.{FileOutputFormat => NewFileOutputFormat} import org.apache.spark._ +import org.apache.spark.annotation.Experimental import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.SparkHadoopWriter import org.apache.spark.Partitioner.defaultPartitioner @@ -201,9 +202,11 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) def countByKey(): Map[K, Long] = self.map(_._1).countByValue() /** - * (Experimental) Approximate version of countByKey that can return a partial result if it does + * :: Experimental :: + * Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ + @Experimental def countByKeyApprox(timeout: Long, confidence: Double = 0.95) : PartialResult[Map[K, BoundedDouble]] = { self.map(_._1).countByValueApprox(timeout, confidence) @@ -261,7 +264,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * Group the values for each key in the RDD into a single sequence. Allows controlling the * partitioning of the resulting key-value pair RDD by passing a Partitioner. */ - def groupByKey(partitioner: Partitioner): RDD[(K, Seq[V])] = { + def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = { // groupByKey shouldn't use map side combine because map side combine does not // reduce the amount of data shuffled and requires all map side data be inserted // into a hash table, leading to more objects in the old gen. @@ -270,14 +273,14 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) def mergeCombiners(c1: ArrayBuffer[V], c2: ArrayBuffer[V]) = c1 ++ c2 val bufs = combineByKey[ArrayBuffer[V]]( createCombiner _, mergeValue _, mergeCombiners _, partitioner, mapSideCombine=false) - bufs.asInstanceOf[RDD[(K, Seq[V])]] + bufs.mapValues(_.toIterable) } /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with into `numPartitions` partitions. */ - def groupByKey(numPartitions: Int): RDD[(K, Seq[V])] = { + def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = { groupByKey(new HashPartitioner(numPartitions)) } @@ -298,7 +301,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) */ def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => - for (v <- vs.iterator; w <- ws.iterator) yield (v, w) + for (v <- vs; w <- ws) yield (v, w) } } @@ -311,9 +314,9 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => if (ws.isEmpty) { - vs.iterator.map(v => (v, None)) + vs.map(v => (v, None)) } else { - for (v <- vs.iterator; w <- ws.iterator) yield (v, Some(w)) + for (v <- vs; w <- ws) yield (v, Some(w)) } } } @@ -328,9 +331,9 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) : RDD[(K, (Option[V], W))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => if (vs.isEmpty) { - ws.iterator.map(w => (None, w)) + ws.map(w => (None, w)) } else { - for (v <- vs.iterator; w <- ws.iterator) yield (Some(v), w) + for (v <- vs; w <- ws) yield (Some(v), w) } } } @@ -358,7 +361,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with the existing partitioner/parallelism level. */ - def groupByKey(): RDD[(K, Seq[V])] = { + def groupByKey(): RDD[(K, Iterable[V])] = { groupByKey(defaultPartitioner(self)) } @@ -453,7 +456,8 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ - def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Seq[V], Seq[W]))] = { + def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner) + : RDD[(K, (Iterable[V], Iterable[W]))] = { if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) { throw new SparkException("Default partitioner cannot partition array keys.") } @@ -468,13 +472,15 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner) - : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { + : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = { if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) { throw new SparkException("Default partitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K](Seq(self, other1, other2), partitioner) cg.mapValues { case Seq(vs, w1s, w2s) => - (vs.asInstanceOf[Seq[V]], w1s.asInstanceOf[Seq[W1]], w2s.asInstanceOf[Seq[W2]]) + (vs.asInstanceOf[Seq[V]], + w1s.asInstanceOf[Seq[W1]], + w2s.asInstanceOf[Seq[W2]]) } } @@ -482,7 +488,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ - def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = { + def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner(self, other)) } @@ -491,7 +497,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) - : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { + : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = { cogroup(other1, other2, defaultPartitioner(self, other1, other2)) } @@ -499,7 +505,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ - def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Seq[V], Seq[W]))] = { + def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, new HashPartitioner(numPartitions)) } @@ -508,18 +514,18 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int) - : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { + : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = { cogroup(other1, other2, new HashPartitioner(numPartitions)) } /** Alias for cogroup. */ - def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = { + def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner(self, other)) } /** Alias for cogroup. */ def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) - : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { + : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = { cogroup(other1, other2, defaultPartitioner(self, other1, other2)) } diff --git a/core/src/main/scala/org/apache/spark/rdd/PartitionPruningRDD.scala b/core/src/main/scala/org/apache/spark/rdd/PartitionPruningRDD.scala index b0440ca7f32cf..f781a8d776f2a 100644 --- a/core/src/main/scala/org/apache/spark/rdd/PartitionPruningRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/PartitionPruningRDD.scala @@ -20,8 +20,10 @@ package org.apache.spark.rdd import scala.reflect.ClassTag import org.apache.spark.{NarrowDependency, Partition, TaskContext} +import org.apache.spark.annotation.DeveloperApi -class PartitionPruningRDDPartition(idx: Int, val parentSplit: Partition) extends Partition { +private[spark] class PartitionPruningRDDPartition(idx: Int, val parentSplit: Partition) + extends Partition { override val index = idx } @@ -30,7 +32,7 @@ class PartitionPruningRDDPartition(idx: Int, val parentSplit: Partition) extends * Represents a dependency between the PartitionPruningRDD and its parent. In this * case, the child RDD contains a subset of partitions of the parents'. */ -class PruneDependency[T](rdd: RDD[T], @transient partitionFilterFunc: Int => Boolean) +private[spark] class PruneDependency[T](rdd: RDD[T], @transient partitionFilterFunc: Int => Boolean) extends NarrowDependency[T](rdd) { @transient @@ -45,11 +47,13 @@ class PruneDependency[T](rdd: RDD[T], @transient partitionFilterFunc: Int => Boo /** + * :: DeveloperApi :: * A RDD used to prune RDD partitions/partitions so we can avoid launching tasks on * all partitions. An example use case: If we know the RDD is partitioned by range, * and the execution DAG has a filter on the key, we can avoid launching tasks * on partitions that don't have the range covering the key. */ +@DeveloperApi class PartitionPruningRDD[T: ClassTag]( @transient prev: RDD[T], @transient partitionFilterFunc: Int => Boolean) @@ -63,6 +67,7 @@ class PartitionPruningRDD[T: ClassTag]( } +@DeveloperApi object PartitionPruningRDD { /** diff --git a/core/src/main/scala/org/apache/spark/rdd/PartitionwiseSampledRDD.scala b/core/src/main/scala/org/apache/spark/rdd/PartitionwiseSampledRDD.scala index ce4c0d382baab..b4e3bb5d75e17 100644 --- a/core/src/main/scala/org/apache/spark/rdd/PartitionwiseSampledRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/PartitionwiseSampledRDD.scala @@ -42,7 +42,7 @@ class PartitionwiseSampledRDDPartition(val prev: Partition, val seed: Long) * @tparam T input RDD item type * @tparam U sampled RDD item type */ -class PartitionwiseSampledRDD[T: ClassTag, U: ClassTag]( +private[spark] class PartitionwiseSampledRDD[T: ClassTag, U: ClassTag]( prev: RDD[T], sampler: RandomSampler[T, U], @transient seed: Long = System.nanoTime) diff --git a/core/src/main/scala/org/apache/spark/rdd/PipedRDD.scala b/core/src/main/scala/org/apache/spark/rdd/PipedRDD.scala index 41ae0fec823e7..e441d4a40ccd2 100644 --- a/core/src/main/scala/org/apache/spark/rdd/PipedRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/PipedRDD.scala @@ -37,7 +37,7 @@ import org.apache.spark.util.Utils * An RDD that pipes the contents of each parent partition through an external command * (printing them one per line) and returns the output as a collection of strings. */ -class PipedRDD[T: ClassTag]( +private[spark] class PipedRDD[T: ClassTag]( prev: RDD[T], command: Seq[String], envVars: Map[String, String], diff --git a/core/src/main/scala/org/apache/spark/rdd/RDD.scala b/core/src/main/scala/org/apache/spark/rdd/RDD.scala index bf3c57ad41eb2..3437b2cac19c2 100644 --- a/core/src/main/scala/org/apache/spark/rdd/RDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/RDD.scala @@ -35,6 +35,7 @@ import org.apache.hadoop.mapred.TextOutputFormat import org.apache.spark._ import org.apache.spark.Partitioner._ import org.apache.spark.SparkContext._ +import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.api.java.JavaRDD import org.apache.spark.partial.BoundedDouble import org.apache.spark.partial.CountEvaluator @@ -86,22 +87,34 @@ abstract class RDD[T: ClassTag]( // Methods that should be implemented by subclasses of RDD // ======================================================================= - /** Implemented by subclasses to compute a given partition. */ + /** + * :: DeveloperApi :: + * Implemented by subclasses to compute a given partition. + */ + @DeveloperApi def compute(split: Partition, context: TaskContext): Iterator[T] /** + * :: DeveloperApi :: * Implemented by subclasses to return the set of partitions in this RDD. This method will only * be called once, so it is safe to implement a time-consuming computation in it. */ + @DeveloperApi protected def getPartitions: Array[Partition] /** + * :: DeveloperApi :: * Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only * be called once, so it is safe to implement a time-consuming computation in it. */ + @DeveloperApi protected def getDependencies: Seq[Dependency[_]] = deps - /** Optionally overridden by subclasses to specify placement preferences. */ + /** + * :: DeveloperApi :: + * Optionally overridden by subclasses to specify placement preferences. + */ + @DeveloperApi protected def getPreferredLocations(split: Partition): Seq[String] = Nil /** Optionally overridden by subclasses to specify how they are partitioned. */ @@ -438,20 +451,20 @@ abstract class RDD[T: ClassTag]( /** * Return an RDD of grouped items. */ - def groupBy[K: ClassTag](f: T => K): RDD[(K, Seq[T])] = + def groupBy[K: ClassTag](f: T => K): RDD[(K, Iterable[T])] = groupBy[K](f, defaultPartitioner(this)) /** * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ - def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Seq[T])] = + def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Iterable[T])] = groupBy(f, new HashPartitioner(numPartitions)) /** * Return an RDD of grouped items. */ - def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Seq[T])] = { + def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Iterable[T])] = { val cleanF = sc.clean(f) this.map(t => (cleanF(t), t)).groupByKey(p) } @@ -518,9 +531,11 @@ abstract class RDD[T: ClassTag]( } /** + * :: DeveloperApi :: * Return a new RDD by applying a function to each partition of this RDD. This is a variant of * mapPartitions that also passes the TaskContext into the closure. */ + @DeveloperApi def mapPartitionsWithContext[U: ClassTag]( f: (TaskContext, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = { @@ -792,9 +807,11 @@ abstract class RDD[T: ClassTag]( def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum /** - * (Experimental) Approximate version of count() that returns a potentially incomplete result + * :: Experimental :: + * Approximate version of count() that returns a potentially incomplete result * within a timeout, even if not all tasks have finished. */ + @Experimental def countApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = { val countElements: (TaskContext, Iterator[T]) => Long = { (ctx, iter) => var result = 0L @@ -838,8 +855,10 @@ abstract class RDD[T: ClassTag]( } /** - * (Experimental) Approximate version of countByValue(). + * :: Experimental :: + * Approximate version of countByValue(). */ + @Experimental def countByValueApprox( timeout: Long, confidence: Double = 0.95 @@ -860,6 +879,7 @@ abstract class RDD[T: ClassTag]( } /** + * :: Experimental :: * Return approximate number of distinct elements in the RDD. * * The accuracy of approximation can be controlled through the relative standard deviation @@ -867,6 +887,7 @@ abstract class RDD[T: ClassTag]( * more accurate counts but increase the memory footprint and vise versa. The default value of * relativeSD is 0.05. */ + @Experimental def countApproxDistinct(relativeSD: Double = 0.05): Long = { val zeroCounter = new SerializableHyperLogLog(new HyperLogLog(relativeSD)) aggregate(zeroCounter)(_.add(_), _.merge(_)).value.cardinality() diff --git a/core/src/main/scala/org/apache/spark/rdd/SampledRDD.scala b/core/src/main/scala/org/apache/spark/rdd/SampledRDD.scala index 4ceea557f569c..b097c30f8c231 100644 --- a/core/src/main/scala/org/apache/spark/rdd/SampledRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/SampledRDD.scala @@ -33,7 +33,7 @@ class SampledRDDPartition(val prev: Partition, val seed: Int) extends Partition } @deprecated("Replaced by PartitionwiseSampledRDD", "1.0.0") -class SampledRDD[T: ClassTag]( +private[spark] class SampledRDD[T: ClassTag]( prev: RDD[T], withReplacement: Boolean, frac: Double, diff --git a/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala b/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala index 02660ea6a45c5..802b0bdfb2d59 100644 --- a/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala @@ -20,6 +20,7 @@ package org.apache.spark.rdd import scala.reflect.ClassTag import org.apache.spark.{Dependency, Partition, Partitioner, ShuffleDependency, SparkEnv, TaskContext} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.serializer.Serializer private[spark] class ShuffledRDDPartition(val idx: Int) extends Partition { @@ -28,12 +29,14 @@ private[spark] class ShuffledRDDPartition(val idx: Int) extends Partition { } /** + * :: DeveloperApi :: * The resulting RDD from a shuffle (e.g. repartitioning of data). * @param prev the parent RDD. * @param part the partitioner used to partition the RDD * @tparam K the key class. * @tparam V the value class. */ +@DeveloperApi class ShuffledRDD[K, V, P <: Product2[K, V] : ClassTag]( @transient var prev: RDD[P], part: Partitioner) diff --git a/core/src/main/scala/org/apache/spark/rdd/UnionRDD.scala b/core/src/main/scala/org/apache/spark/rdd/UnionRDD.scala index a447030752096..21c6e07d69f90 100644 --- a/core/src/main/scala/org/apache/spark/rdd/UnionRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/UnionRDD.scala @@ -23,6 +23,7 @@ import scala.collection.mutable.ArrayBuffer import scala.reflect.ClassTag import org.apache.spark.{Dependency, Partition, RangeDependency, SparkContext, TaskContext} +import org.apache.spark.annotation.DeveloperApi private[spark] class UnionPartition[T: ClassTag](idx: Int, rdd: RDD[T], splitIndex: Int) extends Partition { @@ -43,6 +44,7 @@ private[spark] class UnionPartition[T: ClassTag](idx: Int, rdd: RDD[T], splitInd } } +@DeveloperApi class UnionRDD[T: ClassTag]( sc: SparkContext, @transient var rdds: Seq[RDD[T]]) diff --git a/core/src/main/scala/org/apache/spark/rdd/ZippedPartitionsRDD.scala b/core/src/main/scala/org/apache/spark/rdd/ZippedPartitionsRDD.scala index b56643444aa40..f3d30f6c9b32f 100644 --- a/core/src/main/scala/org/apache/spark/rdd/ZippedPartitionsRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/ZippedPartitionsRDD.scala @@ -41,7 +41,7 @@ private[spark] class ZippedPartitionsPartition( } } -abstract class ZippedPartitionsBaseRDD[V: ClassTag]( +private[spark] abstract class ZippedPartitionsBaseRDD[V: ClassTag]( sc: SparkContext, var rdds: Seq[RDD[_]], preservesPartitioning: Boolean = false) @@ -74,7 +74,7 @@ abstract class ZippedPartitionsBaseRDD[V: ClassTag]( } } -class ZippedPartitionsRDD2[A: ClassTag, B: ClassTag, V: ClassTag]( +private[spark] class ZippedPartitionsRDD2[A: ClassTag, B: ClassTag, V: ClassTag]( sc: SparkContext, f: (Iterator[A], Iterator[B]) => Iterator[V], var rdd1: RDD[A], @@ -94,7 +94,7 @@ class ZippedPartitionsRDD2[A: ClassTag, B: ClassTag, V: ClassTag]( } } -class ZippedPartitionsRDD3 +private[spark] class ZippedPartitionsRDD3 [A: ClassTag, B: ClassTag, C: ClassTag, V: ClassTag]( sc: SparkContext, f: (Iterator[A], Iterator[B], Iterator[C]) => Iterator[V], @@ -119,7 +119,7 @@ class ZippedPartitionsRDD3 } } -class ZippedPartitionsRDD4 +private[spark] class ZippedPartitionsRDD4 [A: ClassTag, B: ClassTag, C: ClassTag, D:ClassTag, V: ClassTag]( sc: SparkContext, f: (Iterator[A], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V], diff --git a/core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala b/core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala index 2119e76f0e032..b8110ffc42f2d 100644 --- a/core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala @@ -44,7 +44,7 @@ private[spark] class ZippedPartition[T: ClassTag, U: ClassTag]( } } -class ZippedRDD[T: ClassTag, U: ClassTag]( +private[spark] class ZippedRDD[T: ClassTag, U: ClassTag]( sc: SparkContext, var rdd1: RDD[T], var rdd2: RDD[U]) diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala index 6368665f249ee..c41d6d75a1d49 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala @@ -342,22 +342,24 @@ class DAGScheduler( } /** - * Removes job and any stages that are not needed by any other job. Returns the set of ids for - * stages that were removed. The associated tasks for those stages need to be cancelled if we - * got here via job cancellation. + * Removes state for job and any stages that are not needed by any other job. Does not + * handle cancelling tasks or notifying the SparkListener about finished jobs/stages/tasks. + * + * @param job The job whose state to cleanup. + * @param resultStage Specifies the result stage for the job; if set to None, this method + * searches resultStagesToJob to find and cleanup the appropriate result stage. */ - private def removeJobAndIndependentStages(jobId: Int): Set[Int] = { - val registeredStages = jobIdToStageIds(jobId) - val independentStages = new HashSet[Int]() - if (registeredStages.isEmpty) { - logError("No stages registered for job " + jobId) + private def cleanupStateForJobAndIndependentStages(job: ActiveJob, resultStage: Option[Stage]) { + val registeredStages = jobIdToStageIds.get(job.jobId) + if (registeredStages.isEmpty || registeredStages.get.isEmpty) { + logError("No stages registered for job " + job.jobId) } else { - stageIdToJobIds.filterKeys(stageId => registeredStages.contains(stageId)).foreach { + stageIdToJobIds.filterKeys(stageId => registeredStages.get.contains(stageId)).foreach { case (stageId, jobSet) => - if (!jobSet.contains(jobId)) { + if (!jobSet.contains(job.jobId)) { logError( "Job %d not registered for stage %d even though that stage was registered for the job" - .format(jobId, stageId)) + .format(job.jobId, stageId)) } else { def removeStage(stageId: Int) { // data structures based on Stage @@ -394,23 +396,28 @@ class DAGScheduler( .format(stageId, stageIdToStage.size)) } - jobSet -= jobId + jobSet -= job.jobId if (jobSet.isEmpty) { // no other job needs this stage - independentStages += stageId removeStage(stageId) } } } } - independentStages.toSet - } - - private def jobIdToStageIdsRemove(jobId: Int) { - if (!jobIdToStageIds.contains(jobId)) { - logDebug("Trying to remove unregistered job " + jobId) + jobIdToStageIds -= job.jobId + jobIdToActiveJob -= job.jobId + activeJobs -= job + + if (resultStage.isEmpty) { + // Clean up result stages. + val resultStagesForJob = resultStageToJob.keySet.filter( + stage => resultStageToJob(stage).jobId == job.jobId) + if (resultStagesForJob.size != 1) { + logWarning( + s"${resultStagesForJob.size} result stages for job ${job.jobId} (expect exactly 1)") + } + resultStageToJob --= resultStagesForJob } else { - removeJobAndIndependentStages(jobId) - jobIdToStageIds -= jobId + resultStageToJob -= resultStage.get } } @@ -460,7 +467,7 @@ class DAGScheduler( val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties) waiter.awaitResult() match { case JobSucceeded => {} - case JobFailed(exception: Exception, _) => + case JobFailed(exception: Exception) => logInfo("Failed to run " + callSite) throw exception } @@ -606,7 +613,16 @@ class DAGScheduler( for (job <- activeJobs) { val error = new SparkException("Job cancelled because SparkContext was shut down") job.listener.jobFailed(error) - listenerBus.post(SparkListenerJobEnd(job.jobId, JobFailed(error, -1))) + // Tell the listeners that all of the running stages have ended. Don't bother + // cancelling the stages because if the DAG scheduler is stopped, the entire application + // is in the process of getting stopped. + val stageFailedMessage = "Stage cancelled because SparkContext was shut down" + runningStages.foreach { stage => + val info = stageToInfos(stage) + info.stageFailed(stageFailedMessage) + listenerBus.post(SparkListenerStageCompleted(info)) + } + listenerBus.post(SparkListenerJobEnd(job.jobId, JobFailed(error))) } return true } @@ -676,7 +692,7 @@ class DAGScheduler( } } catch { case e: Exception => - jobResult = JobFailed(e, job.finalStage.id) + jobResult = JobFailed(e) job.listener.jobFailed(e) } finally { val s = job.finalStage @@ -826,11 +842,8 @@ class DAGScheduler( job.numFinished += 1 // If the whole job has finished, remove it if (job.numFinished == job.numPartitions) { - jobIdToActiveJob -= stage.jobId - activeJobs -= job - resultStageToJob -= stage markStageAsFinished(stage) - jobIdToStageIdsRemove(job.jobId) + cleanupStateForJobAndIndependentStages(job, Some(stage)) listenerBus.post(SparkListenerJobEnd(job.jobId, JobSucceeded)) } job.listener.taskSucceeded(rt.outputId, event.result) @@ -982,15 +995,7 @@ class DAGScheduler( if (!jobIdToStageIds.contains(jobId)) { logDebug("Trying to cancel unregistered job " + jobId) } else { - val independentStages = removeJobAndIndependentStages(jobId) - independentStages.foreach(taskScheduler.cancelTasks) - val error = new SparkException("Job %d cancelled".format(jobId)) - val job = jobIdToActiveJob(jobId) - job.listener.jobFailed(error) - jobIdToStageIds -= jobId - activeJobs -= job - jobIdToActiveJob -= jobId - listenerBus.post(SparkListenerJobEnd(job.jobId, JobFailed(error, job.finalStage.id))) + failJobAndIndependentStages(jobIdToActiveJob(jobId), s"Job $jobId cancelled", None) } } @@ -1007,19 +1012,57 @@ class DAGScheduler( stageToInfos(failedStage).completionTime = Some(System.currentTimeMillis()) for (resultStage <- dependentStages) { val job = resultStageToJob(resultStage) - val error = new SparkException("Job aborted: " + reason) - job.listener.jobFailed(error) - jobIdToStageIdsRemove(job.jobId) - jobIdToActiveJob -= resultStage.jobId - activeJobs -= job - resultStageToJob -= resultStage - listenerBus.post(SparkListenerJobEnd(job.jobId, JobFailed(error, failedStage.id))) + failJobAndIndependentStages(job, s"Job aborted due to stage failure: $reason", + Some(resultStage)) } if (dependentStages.isEmpty) { logInfo("Ignoring failure of " + failedStage + " because all jobs depending on it are done") } } + /** + * Fails a job and all stages that are only used by that job, and cleans up relevant state. + * + * @param resultStage The result stage for the job, if known. Used to cleanup state for the job + * slightly more efficiently than when not specified. + */ + private def failJobAndIndependentStages(job: ActiveJob, failureReason: String, + resultStage: Option[Stage]) { + val error = new SparkException(failureReason) + job.listener.jobFailed(error) + + // Cancel all independent, running stages. + val stages = jobIdToStageIds(job.jobId) + if (stages.isEmpty) { + logError("No stages registered for job " + job.jobId) + } + stages.foreach { stageId => + val jobsForStage = stageIdToJobIds.get(stageId) + if (jobsForStage.isEmpty || !jobsForStage.get.contains(job.jobId)) { + logError( + "Job %d not registered for stage %d even though that stage was registered for the job" + .format(job.jobId, stageId)) + } else if (jobsForStage.get.size == 1) { + if (!stageIdToStage.contains(stageId)) { + logError("Missing Stage for stage with id $stageId") + } else { + // This is the only job that uses this stage, so fail the stage if it is running. + val stage = stageIdToStage(stageId) + if (runningStages.contains(stage)) { + taskScheduler.cancelTasks(stageId) + val stageInfo = stageToInfos(stage) + stageInfo.stageFailed(failureReason) + listenerBus.post(SparkListenerStageCompleted(stageToInfos(stage))) + } + } + } + } + + cleanupStateForJobAndIndependentStages(job, resultStage) + + listenerBus.post(SparkListenerJobEnd(job.jobId, JobFailed(error))) + } + /** * Return true if one of stage's ancestors is target. */ diff --git a/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala b/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala index b3f2cb346f7da..bac37bfdaa23f 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/InputFormatInfo.scala @@ -27,11 +27,14 @@ import org.apache.hadoop.mapreduce.Job import org.apache.hadoop.util.ReflectionUtils import org.apache.spark.Logging +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.deploy.SparkHadoopUtil /** + * :: DeveloperApi :: * Parses and holds information about inputFormat (and files) specified as a parameter. */ +@DeveloperApi class InputFormatInfo(val configuration: Configuration, val inputFormatClazz: Class[_], val path: String) extends Logging { diff --git a/core/src/main/scala/org/apache/spark/scheduler/JobLogger.scala b/core/src/main/scala/org/apache/spark/scheduler/JobLogger.scala index 5cecf9416b32c..713aebfa3ce00 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/JobLogger.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/JobLogger.scala @@ -25,9 +25,11 @@ import java.util.concurrent.LinkedBlockingQueue import scala.collection.mutable.HashMap import org.apache.spark._ +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.executor.TaskMetrics /** + * :: DeveloperApi :: * A logger class to record runtime information for jobs in Spark. This class outputs one log file * for each Spark job, containing tasks start/stop and shuffle information. JobLogger is a subclass * of SparkListener, use addSparkListener to add JobLogger to a SparkContext after the SparkContext @@ -38,7 +40,7 @@ import org.apache.spark.executor.TaskMetrics * to log application information as SparkListenerEvents. To enable this functionality, set * spark.eventLog.enabled to true. */ - +@DeveloperApi @deprecated("Log application information by setting spark.eventLog.enabled.", "1.0.0") class JobLogger(val user: String, val logDirName: String) extends SparkListener with Logging { @@ -191,7 +193,11 @@ class JobLogger(val user: String, val logDirName: String) extends SparkListener */ override def onStageCompleted(stageCompleted: SparkListenerStageCompleted) { val stageId = stageCompleted.stageInfo.stageId - stageLogInfo(stageId, "STAGE_ID=%d STATUS=COMPLETED".format(stageId)) + if (stageCompleted.stageInfo.failureReason.isEmpty) { + stageLogInfo(stageId, s"STAGE_ID=$stageId STATUS=COMPLETED") + } else { + stageLogInfo(stageId, s"STAGE_ID=$stageId STATUS=FAILED") + } } /** @@ -227,7 +233,7 @@ class JobLogger(val user: String, val logDirName: String) extends SparkListener var info = "JOB_ID=" + jobId jobEnd.jobResult match { case JobSucceeded => info += " STATUS=SUCCESS" - case JobFailed(exception, _) => + case JobFailed(exception) => info += " STATUS=FAILED REASON=" exception.getMessage.split("\\s+").foreach(info += _ + "_") case _ => diff --git a/core/src/main/scala/org/apache/spark/scheduler/JobResult.scala b/core/src/main/scala/org/apache/spark/scheduler/JobResult.scala index 3cf4e3077e4a4..4cd6cbe189aab 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/JobResult.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/JobResult.scala @@ -17,12 +17,17 @@ package org.apache.spark.scheduler +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A result of a job in the DAGScheduler. */ -private[spark] sealed trait JobResult +@DeveloperApi +sealed trait JobResult -private[spark] case object JobSucceeded extends JobResult +@DeveloperApi +case object JobSucceeded extends JobResult -// A failed stage ID of -1 means there is not a particular stage that caused the failure -private[spark] case class JobFailed(exception: Exception, failedStageId: Int) extends JobResult +@DeveloperApi +private[spark] case class JobFailed(exception: Exception) extends JobResult diff --git a/core/src/main/scala/org/apache/spark/scheduler/JobWaiter.scala b/core/src/main/scala/org/apache/spark/scheduler/JobWaiter.scala index 8007b5418741e..e9bfee2248e5b 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/JobWaiter.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/JobWaiter.scala @@ -64,7 +64,7 @@ private[spark] class JobWaiter[T]( override def jobFailed(exception: Exception): Unit = synchronized { _jobFinished = true - jobResult = JobFailed(exception, -1) + jobResult = JobFailed(exception) this.notifyAll() } diff --git a/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala b/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala index d4eb0ac88d8e8..ced20350d5356 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala @@ -23,21 +23,28 @@ import scala.collection.Map import scala.collection.mutable import org.apache.spark.{Logging, TaskEndReason} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.executor.TaskMetrics import org.apache.spark.storage.BlockManagerId import org.apache.spark.util.{Distribution, Utils} +@DeveloperApi sealed trait SparkListenerEvent +@DeveloperApi case class SparkListenerStageSubmitted(stageInfo: StageInfo, properties: Properties = null) extends SparkListenerEvent +@DeveloperApi case class SparkListenerStageCompleted(stageInfo: StageInfo) extends SparkListenerEvent +@DeveloperApi case class SparkListenerTaskStart(stageId: Int, taskInfo: TaskInfo) extends SparkListenerEvent +@DeveloperApi case class SparkListenerTaskGettingResult(taskInfo: TaskInfo) extends SparkListenerEvent +@DeveloperApi case class SparkListenerTaskEnd( stageId: Int, taskType: String, @@ -46,20 +53,26 @@ case class SparkListenerTaskEnd( taskMetrics: TaskMetrics) extends SparkListenerEvent +@DeveloperApi case class SparkListenerJobStart(jobId: Int, stageIds: Seq[Int], properties: Properties = null) extends SparkListenerEvent +@DeveloperApi case class SparkListenerJobEnd(jobId: Int, jobResult: JobResult) extends SparkListenerEvent +@DeveloperApi case class SparkListenerEnvironmentUpdate(environmentDetails: Map[String, Seq[(String, String)]]) extends SparkListenerEvent +@DeveloperApi case class SparkListenerBlockManagerAdded(blockManagerId: BlockManagerId, maxMem: Long) extends SparkListenerEvent +@DeveloperApi case class SparkListenerBlockManagerRemoved(blockManagerId: BlockManagerId) extends SparkListenerEvent +@DeveloperApi case class SparkListenerUnpersistRDD(rddId: Int) extends SparkListenerEvent /** An event used in the listener to shutdown the listener daemon thread. */ @@ -67,11 +80,14 @@ private[spark] case object SparkListenerShutdown extends SparkListenerEvent /** - * Interface for listening to events from the Spark scheduler. + * :: DeveloperApi :: + * Interface for listening to events from the Spark scheduler. Note that this is an internal + * interface which might change in different Spark releases. */ +@DeveloperApi trait SparkListener { /** - * Called when a stage is completed, with information on the completed stage + * Called when a stage completes successfully or fails, with information on the completed stage. */ def onStageCompleted(stageCompleted: SparkListenerStageCompleted) { } @@ -128,8 +144,10 @@ trait SparkListener { } /** + * :: DeveloperApi :: * Simple SparkListener that logs a few summary statistics when each stage completes */ +@DeveloperApi class StatsReportListener extends SparkListener with Logging { import org.apache.spark.scheduler.StatsReportListener._ diff --git a/core/src/main/scala/org/apache/spark/scheduler/SplitInfo.scala b/core/src/main/scala/org/apache/spark/scheduler/SplitInfo.scala index 5b40a3eb29b30..b85eabd6bbdbc 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/SplitInfo.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/SplitInfo.scala @@ -19,8 +19,11 @@ package org.apache.spark.scheduler import collection.mutable.ArrayBuffer +import org.apache.spark.annotation.DeveloperApi + // information about a specific split instance : handles both split instances. // So that we do not need to worry about the differences. +@DeveloperApi class SplitInfo(val inputFormatClazz: Class[_], val hostLocation: String, val path: String, val length: Long, val underlyingSplit: Any) { override def toString(): String = { diff --git a/core/src/main/scala/org/apache/spark/scheduler/StageInfo.scala b/core/src/main/scala/org/apache/spark/scheduler/StageInfo.scala index 8115a7ed7896d..9f732f7191465 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/StageInfo.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/StageInfo.scala @@ -17,17 +17,28 @@ package org.apache.spark.scheduler +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.storage.RDDInfo /** + * :: DeveloperApi :: * Stores information about a stage to pass from the scheduler to SparkListeners. */ -private[spark] +@DeveloperApi class StageInfo(val stageId: Int, val name: String, val numTasks: Int, val rddInfo: RDDInfo) { /** When this stage was submitted from the DAGScheduler to a TaskScheduler. */ var submissionTime: Option[Long] = None + /** Time when all tasks in the stage completed or when the stage was cancelled. */ var completionTime: Option[Long] = None + /** If the stage failed, the reason why. */ + var failureReason: Option[String] = None + var emittedTaskSizeWarning = false + + def stageFailed(reason: String) { + failureReason = Some(reason) + completionTime = Some(System.currentTimeMillis) + } } private[spark] diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskInfo.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskInfo.scala index 6183b125def99..4c62e4dc0bac8 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskInfo.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskInfo.scala @@ -17,10 +17,13 @@ package org.apache.spark.scheduler +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * Information about a running task attempt inside a TaskSet. */ -private[spark] +@DeveloperApi class TaskInfo( val taskId: Long, val index: Int, @@ -46,15 +49,15 @@ class TaskInfo( var serializedSize: Int = 0 - def markGettingResult(time: Long = System.currentTimeMillis) { + private[spark] def markGettingResult(time: Long = System.currentTimeMillis) { gettingResultTime = time } - def markSuccessful(time: Long = System.currentTimeMillis) { + private[spark] def markSuccessful(time: Long = System.currentTimeMillis) { finishTime = time } - def markFailed(time: Long = System.currentTimeMillis) { + private[spark] def markFailed(time: Long = System.currentTimeMillis) { finishTime = time failed = true } @@ -83,11 +86,11 @@ class TaskInfo( def duration: Long = { if (!finished) { - throw new UnsupportedOperationException("duration() called on unfinished tasks") + throw new UnsupportedOperationException("duration() called on unfinished task") } else { finishTime - launchTime } } - def timeRunning(currentTime: Long): Long = currentTime - launchTime + private[spark] def timeRunning(currentTime: Long): Long = currentTime - launchTime } diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskLocality.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskLocality.scala index 308edb12edd5c..eb920ab0c0b67 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskLocality.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskLocality.scala @@ -17,7 +17,10 @@ package org.apache.spark.scheduler -private[spark] object TaskLocality extends Enumeration { +import org.apache.spark.annotation.DeveloperApi + +@DeveloperApi +object TaskLocality extends Enumeration { // Process local is expected to be used ONLY within TaskSetManager for now. val PROCESS_LOCAL, NODE_LOCAL, RACK_LOCAL, ANY = Value diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala index 06b041e1fd9a9..c478e685641d7 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala @@ -194,10 +194,12 @@ private[spark] class CoarseMesosSchedulerBackend( .addResources(createResource("cpus", cpusToUse)) .addResources(createResource("mem", sc.executorMemory)) .build() - d.launchTasks(offer.getId, Collections.singletonList(task), filters) + d.launchTasks(Collections.singletonList(offer.getId), + Collections.singletonList(task), + filters) } else { // Filter it out - d.launchTasks(offer.getId, Collections.emptyList[MesosTaskInfo](), filters) + d.declineOffer(offer.getId, filters) } } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerBackend.scala index dfdcafe19fb93..f878ae338fc95 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerBackend.scala @@ -223,7 +223,7 @@ private[spark] class MesosSchedulerBackend( // Reply to the offers val filters = Filters.newBuilder().setRefuseSeconds(1).build() // TODO: lower timeout? for (i <- 0 until offers.size) { - d.launchTasks(offers(i).getId, mesosTasks(i), filters) + d.launchTasks(Collections.singletonList(offers(i).getId), mesosTasks(i), filters) } } } finally { diff --git a/core/src/main/scala/org/apache/spark/serializer/JavaSerializer.scala b/core/src/main/scala/org/apache/spark/serializer/JavaSerializer.scala index 18a68b05fa853..5e5883554fcc1 100644 --- a/core/src/main/scala/org/apache/spark/serializer/JavaSerializer.scala +++ b/core/src/main/scala/org/apache/spark/serializer/JavaSerializer.scala @@ -21,6 +21,7 @@ import java.io._ import java.nio.ByteBuffer import org.apache.spark.SparkConf +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.ByteBufferInputStream private[spark] class JavaSerializationStream(out: OutputStream, counterReset: Int) @@ -94,8 +95,14 @@ private[spark] class JavaSerializerInstance(counterReset: Int) extends Serialize } /** + * :: DeveloperApi :: * A Spark serializer that uses Java's built-in serialization. + * + * Note that this serializer is not guaranteed to be wire-compatible across different versions of + * Spark. It is intended to be used to serialize/de-serialize data within a single + * Spark application. */ +@DeveloperApi class JavaSerializer(conf: SparkConf) extends Serializer with Externalizable { private var counterReset = conf.getInt("spark.serializer.objectStreamReset", 10000) diff --git a/core/src/main/scala/org/apache/spark/serializer/KryoSerializer.scala b/core/src/main/scala/org/apache/spark/serializer/KryoSerializer.scala index 926e71573be32..d1e8c3ef63622 100644 --- a/core/src/main/scala/org/apache/spark/serializer/KryoSerializer.scala +++ b/core/src/main/scala/org/apache/spark/serializer/KryoSerializer.scala @@ -33,6 +33,10 @@ import org.apache.spark.storage.{GetBlock, GotBlock, PutBlock} /** * A Spark serializer that uses the [[https://code.google.com/p/kryo/ Kryo serialization library]]. + * + * Note that this serializer is not guaranteed to be wire-compatible across different versions of + * Spark. It is intended to be used to serialize/de-serialize data within a single + * Spark application. */ class KryoSerializer(conf: SparkConf) extends org.apache.spark.serializer.Serializer diff --git a/core/src/main/scala/org/apache/spark/serializer/Serializer.scala b/core/src/main/scala/org/apache/spark/serializer/Serializer.scala index 099143494b851..9f04dc6e427c0 100644 --- a/core/src/main/scala/org/apache/spark/serializer/Serializer.scala +++ b/core/src/main/scala/org/apache/spark/serializer/Serializer.scala @@ -22,20 +22,27 @@ import java.nio.ByteBuffer import it.unimi.dsi.fastutil.io.FastByteArrayOutputStream -import org.apache.spark.util.{ByteBufferInputStream, NextIterator} import org.apache.spark.SparkEnv +import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.util.{ByteBufferInputStream, NextIterator} /** + * :: DeveloperApi :: * A serializer. Because some serialization libraries are not thread safe, this class is used to * create [[org.apache.spark.serializer.SerializerInstance]] objects that do the actual * serialization and are guaranteed to only be called from one thread at a time. * * Implementations of this trait should implement: + * * 1. a zero-arg constructor or a constructor that accepts a [[org.apache.spark.SparkConf]] * as parameter. If both constructors are defined, the latter takes precedence. * * 2. Java serialization interface. + * + * Note that serializers are not required to be wire-compatible across different versions of Spark. + * They are intended to be used to serialize/de-serialize data within a single Spark application. */ +@DeveloperApi trait Serializer { def newInstance(): SerializerInstance } @@ -49,8 +56,10 @@ object Serializer { /** + * :: DeveloperApi :: * An instance of a serializer, for use by one thread at a time. */ +@DeveloperApi trait SerializerInstance { def serialize[T](t: T): ByteBuffer @@ -81,8 +90,10 @@ trait SerializerInstance { /** + * :: DeveloperApi :: * A stream for writing serialized objects. */ +@DeveloperApi trait SerializationStream { def writeObject[T](t: T): SerializationStream def flush(): Unit @@ -98,8 +109,10 @@ trait SerializationStream { /** + * :: DeveloperApi :: * A stream for reading serialized objects. */ +@DeveloperApi trait DeserializationStream { def readObject[T](): T def close(): Unit diff --git a/core/src/main/scala/org/apache/spark/storage/BlockManager.scala b/core/src/main/scala/org/apache/spark/storage/BlockManager.scala index b021564477c47..a2a729130091f 100644 --- a/core/src/main/scala/org/apache/spark/storage/BlockManager.scala +++ b/core/src/main/scala/org/apache/spark/storage/BlockManager.scala @@ -35,11 +35,11 @@ import org.apache.spark.network._ import org.apache.spark.serializer.Serializer import org.apache.spark.util._ -sealed trait Values +private[spark] sealed trait Values -case class ByteBufferValues(buffer: ByteBuffer) extends Values -case class IteratorValues(iterator: Iterator[Any]) extends Values -case class ArrayBufferValues(buffer: ArrayBuffer[Any]) extends Values +private[spark] case class ByteBufferValues(buffer: ByteBuffer) extends Values +private[spark] case class IteratorValues(iterator: Iterator[Any]) extends Values +private[spark] case class ArrayBufferValues(buffer: ArrayBuffer[Any]) extends Values private[spark] class BlockManager( executorId: String, diff --git a/core/src/main/scala/org/apache/spark/storage/StorageUtils.scala b/core/src/main/scala/org/apache/spark/storage/StorageUtils.scala index ff6e84cf9819a..07255aa366a6d 100644 --- a/core/src/main/scala/org/apache/spark/storage/StorageUtils.scala +++ b/core/src/main/scala/org/apache/spark/storage/StorageUtils.scala @@ -21,6 +21,7 @@ import scala.collection.Map import scala.collection.mutable import org.apache.spark.SparkContext +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils private[spark] @@ -47,6 +48,7 @@ class StorageStatus( } } +@DeveloperApi private[spark] class RDDInfo( val id: Int, diff --git a/core/src/main/scala/org/apache/spark/ui/SparkUI.scala b/core/src/main/scala/org/apache/spark/ui/SparkUI.scala index ef1ad872c8ef7..f53df7fbedf39 100644 --- a/core/src/main/scala/org/apache/spark/ui/SparkUI.scala +++ b/core/src/main/scala/org/apache/spark/ui/SparkUI.scala @@ -80,7 +80,7 @@ private[spark] class SparkUI( /** Bind the HTTP server which backs this web interface */ def bind() { try { - serverInfo = Some(startJettyServer(bindHost, port, handlers, sc.conf)) + serverInfo = Some(startJettyServer("0.0.0.0", port, handlers, sc.conf)) logInfo("Started Spark Web UI at http://%s:%d".format(publicHost, boundPort)) } catch { case e: Exception => diff --git a/core/src/main/scala/org/apache/spark/ui/jobs/JobProgressListener.scala b/core/src/main/scala/org/apache/spark/ui/jobs/JobProgressListener.scala index 048f671c8788f..5167e20ea3d7d 100644 --- a/core/src/main/scala/org/apache/spark/ui/jobs/JobProgressListener.scala +++ b/core/src/main/scala/org/apache/spark/ui/jobs/JobProgressListener.scala @@ -74,8 +74,13 @@ private[ui] class JobProgressListener(conf: SparkConf) extends SparkListener { // Remove by stageId, rather than by StageInfo, in case the StageInfo is from storage poolToActiveStages(stageIdToPool(stageId)).remove(stageId) activeStages.remove(stageId) - completedStages += stage - trimIfNecessary(completedStages) + if (stage.failureReason.isEmpty) { + completedStages += stage + trimIfNecessary(completedStages) + } else { + failedStages += stage + trimIfNecessary(failedStages) + } } /** If stages is too large, remove and garbage collect old stages */ @@ -215,20 +220,6 @@ private[ui] class JobProgressListener(conf: SparkConf) extends SparkListener { } } - override def onJobEnd(jobEnd: SparkListenerJobEnd) = synchronized { - jobEnd.jobResult match { - case JobFailed(_, stageId) => - activeStages.get(stageId).foreach { s => - // Remove by stageId, rather than by StageInfo, in case the StageInfo is from storage - activeStages.remove(s.stageId) - poolToActiveStages(stageIdToPool(stageId)).remove(s.stageId) - failedStages += s - trimIfNecessary(failedStages) - } - case _ => - } - } - override def onEnvironmentUpdate(environmentUpdate: SparkListenerEnvironmentUpdate) { synchronized { val schedulingModeName = diff --git a/core/src/main/scala/org/apache/spark/util/BoundedPriorityQueue.scala b/core/src/main/scala/org/apache/spark/util/BoundedPriorityQueue.scala index c3692f2fd929b..b9f4a5d720b93 100644 --- a/core/src/main/scala/org/apache/spark/util/BoundedPriorityQueue.scala +++ b/core/src/main/scala/org/apache/spark/util/BoundedPriorityQueue.scala @@ -28,7 +28,7 @@ import scala.collection.generic.Growable * class and modifies it such that only the top K elements are retained. * The top K elements are defined by an implicit Ordering[A]. */ -class BoundedPriorityQueue[A](maxSize: Int)(implicit ord: Ordering[A]) +private[spark] class BoundedPriorityQueue[A](maxSize: Int)(implicit ord: Ordering[A]) extends Iterable[A] with Growable[A] with Serializable { private val underlying = new JPriorityQueue[A](maxSize, ord) diff --git a/core/src/main/scala/org/apache/spark/util/CollectionsUtil.scala b/core/src/main/scala/org/apache/spark/util/CollectionsUtil.scala index db3db87e6618e..93235031f3ad5 100644 --- a/core/src/main/scala/org/apache/spark/util/CollectionsUtil.scala +++ b/core/src/main/scala/org/apache/spark/util/CollectionsUtil.scala @@ -22,7 +22,7 @@ import java.util import scala.Array import scala.reflect._ -object CollectionsUtils { +private[spark] object CollectionsUtils { def makeBinarySearch[K <% Ordered[K] : ClassTag] : (Array[K], K) => Int = { classTag[K] match { case ClassTag.Float => diff --git a/core/src/main/scala/org/apache/spark/util/Distribution.scala b/core/src/main/scala/org/apache/spark/util/Distribution.scala index 5b347555fe708..a465298c8c5ab 100644 --- a/core/src/main/scala/org/apache/spark/util/Distribution.scala +++ b/core/src/main/scala/org/apache/spark/util/Distribution.scala @@ -29,7 +29,7 @@ import scala.collection.immutable.IndexedSeq * * Assumes you are giving it a non-empty set of data */ -class Distribution(val data: Array[Double], val startIdx: Int, val endIdx: Int) { +private[spark] class Distribution(val data: Array[Double], val startIdx: Int, val endIdx: Int) { require(startIdx < endIdx) def this(data: Traversable[Double]) = this(data.toArray, 0, data.size) java.util.Arrays.sort(data, startIdx, endIdx) @@ -69,7 +69,7 @@ class Distribution(val data: Array[Double], val startIdx: Int, val endIdx: Int) } } -object Distribution { +private[spark] object Distribution { def apply(data: Traversable[Double]): Option[Distribution] = { if (data.size > 0) { diff --git a/core/src/main/scala/org/apache/spark/util/FileLogger.scala b/core/src/main/scala/org/apache/spark/util/FileLogger.scala index a0c07e32fdc98..b5f2ec6831d26 100644 --- a/core/src/main/scala/org/apache/spark/util/FileLogger.scala +++ b/core/src/main/scala/org/apache/spark/util/FileLogger.scala @@ -36,7 +36,7 @@ import org.apache.spark.io.CompressionCodec * @param compress Whether to compress output * @param overwrite Whether to overwrite existing files */ -class FileLogger( +private[spark] class FileLogger( logDir: String, conf: SparkConf = new SparkConf, outputBufferSize: Int = 8 * 1024, // 8 KB diff --git a/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala b/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala index 2155a8888c85c..19654892bf661 100644 --- a/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala +++ b/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala @@ -166,12 +166,14 @@ private[spark] object JsonProtocol { val rddInfo = rddInfoToJson(stageInfo.rddInfo) val submissionTime = stageInfo.submissionTime.map(JInt(_)).getOrElse(JNothing) val completionTime = stageInfo.completionTime.map(JInt(_)).getOrElse(JNothing) + val failureReason = stageInfo.failureReason.map(JString(_)).getOrElse(JNothing) ("Stage ID" -> stageInfo.stageId) ~ ("Stage Name" -> stageInfo.name) ~ ("Number of Tasks" -> stageInfo.numTasks) ~ ("RDD Info" -> rddInfo) ~ ("Submission Time" -> submissionTime) ~ ("Completion Time" -> completionTime) ~ + ("Failure Reason" -> failureReason) ~ ("Emitted Task Size Warning" -> stageInfo.emittedTaskSizeWarning) } @@ -259,9 +261,7 @@ private[spark] object JsonProtocol { val json = jobResult match { case JobSucceeded => Utils.emptyJson case jobFailed: JobFailed => - val exception = exceptionToJson(jobFailed.exception) - ("Exception" -> exception) ~ - ("Failed Stage ID" -> jobFailed.failedStageId) + JObject("Exception" -> exceptionToJson(jobFailed.exception)) } ("Result" -> result) ~ json } @@ -442,11 +442,13 @@ private[spark] object JsonProtocol { val rddInfo = rddInfoFromJson(json \ "RDD Info") val submissionTime = Utils.jsonOption(json \ "Submission Time").map(_.extract[Long]) val completionTime = Utils.jsonOption(json \ "Completion Time").map(_.extract[Long]) + val failureReason = Utils.jsonOption(json \ "Failure Reason").map(_.extract[String]) val emittedTaskSizeWarning = (json \ "Emitted Task Size Warning").extract[Boolean] val stageInfo = new StageInfo(stageId, stageName, numTasks, rddInfo) stageInfo.submissionTime = submissionTime stageInfo.completionTime = completionTime + stageInfo.failureReason = failureReason stageInfo.emittedTaskSizeWarning = emittedTaskSizeWarning stageInfo } @@ -561,8 +563,7 @@ private[spark] object JsonProtocol { case `jobSucceeded` => JobSucceeded case `jobFailed` => val exception = exceptionFromJson(json \ "Exception") - val failedStageId = (json \ "Failed Stage ID").extract[Int] - new JobFailed(exception, failedStageId) + new JobFailed(exception) } } diff --git a/core/src/main/scala/org/apache/spark/util/MutablePair.scala b/core/src/main/scala/org/apache/spark/util/MutablePair.scala index a6b39247a54ca..74fa77b68de0b 100644 --- a/core/src/main/scala/org/apache/spark/util/MutablePair.scala +++ b/core/src/main/scala/org/apache/spark/util/MutablePair.scala @@ -17,13 +17,17 @@ package org.apache.spark.util +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A tuple of 2 elements. This can be used as an alternative to Scala's Tuple2 when we want to * minimize object allocation. * * @param _1 Element 1 of this MutablePair * @param _2 Element 2 of this MutablePair */ +@DeveloperApi case class MutablePair[@specialized(Int, Long, Double, Char, Boolean/* , AnyRef */) T1, @specialized(Int, Long, Double, Char, Boolean/* , AnyRef */) T2] (var _1: T1, var _2: T2) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SparseMatrix.scala b/core/src/main/scala/org/apache/spark/util/ParentClassLoader.scala similarity index 70% rename from mllib/src/main/scala/org/apache/spark/mllib/linalg/SparseMatrix.scala rename to core/src/main/scala/org/apache/spark/util/ParentClassLoader.scala index cbd1a2a5a4bd8..3abc12681fe9a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SparseMatrix.scala +++ b/core/src/main/scala/org/apache/spark/util/ParentClassLoader.scala @@ -15,16 +15,18 @@ * limitations under the License. */ -package org.apache.spark.mllib.linalg - -import org.apache.spark.rdd.RDD - +package org.apache.spark.util /** - * Class that represents a sparse matrix - * - * @param data RDD of nonzero entries - * @param m number of rows - * @param n numner of columns + * A class loader which makes findClass accesible to the child */ -case class SparseMatrix(val data: RDD[MatrixEntry], val m: Int, val n: Int) +private[spark] class ParentClassLoader(parent: ClassLoader) extends ClassLoader(parent) { + + override def findClass(name: String) = { + super.findClass(name) + } + + override def loadClass(name: String): Class[_] = { + super.loadClass(name) + } +} diff --git a/core/src/main/scala/org/apache/spark/util/TimeStampedHashSet.scala b/core/src/main/scala/org/apache/spark/util/TimeStampedHashSet.scala index 19bece86b36b4..7cd8f28b12dd6 100644 --- a/core/src/main/scala/org/apache/spark/util/TimeStampedHashSet.scala +++ b/core/src/main/scala/org/apache/spark/util/TimeStampedHashSet.scala @@ -22,7 +22,7 @@ import java.util.concurrent.ConcurrentHashMap import scala.collection.JavaConversions import scala.collection.mutable.Set -class TimeStampedHashSet[A] extends Set[A] { +private[spark] class TimeStampedHashSet[A] extends Set[A] { val internalMap = new ConcurrentHashMap[A, Long]() def contains(key: A): Boolean = { diff --git a/core/src/main/scala/org/apache/spark/util/Vector.scala b/core/src/main/scala/org/apache/spark/util/Vector.scala index dc4b8f253f259..3c8f94a416c65 100644 --- a/core/src/main/scala/org/apache/spark/util/Vector.scala +++ b/core/src/main/scala/org/apache/spark/util/Vector.scala @@ -21,6 +21,7 @@ import scala.util.Random import org.apache.spark.util.random.XORShiftRandom +@deprecated("Use Vectors.dense from Spark's mllib.linalg package instead.", "1.0.0") class Vector(val elements: Array[Double]) extends Serializable { def length = elements.length diff --git a/core/src/main/scala/org/apache/spark/util/collection/AppendOnlyMap.scala b/core/src/main/scala/org/apache/spark/util/collection/AppendOnlyMap.scala index b8c852b4ff5c7..025492b177a77 100644 --- a/core/src/main/scala/org/apache/spark/util/collection/AppendOnlyMap.scala +++ b/core/src/main/scala/org/apache/spark/util/collection/AppendOnlyMap.scala @@ -19,7 +19,10 @@ package org.apache.spark.util.collection import java.util.{Arrays, Comparator} +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A simple open hash table optimized for the append-only use case, where keys * are never removed, but the value for each key may be changed. * @@ -29,9 +32,9 @@ import java.util.{Arrays, Comparator} * * TODO: Cache the hash values of each key? java.util.HashMap does that. */ -private[spark] -class AppendOnlyMap[K, V](initialCapacity: Int = 64) extends Iterable[(K, - V)] with Serializable { +@DeveloperApi +class AppendOnlyMap[K, V](initialCapacity: Int = 64) + extends Iterable[(K, V)] with Serializable { require(initialCapacity <= (1 << 29), "Can't make capacity bigger than 2^29 elements") require(initialCapacity >= 1, "Invalid initial capacity") diff --git a/core/src/main/scala/org/apache/spark/util/collection/ExternalAppendOnlyMap.scala b/core/src/main/scala/org/apache/spark/util/collection/ExternalAppendOnlyMap.scala index caa06d5b445b4..dd01ae821f705 100644 --- a/core/src/main/scala/org/apache/spark/util/collection/ExternalAppendOnlyMap.scala +++ b/core/src/main/scala/org/apache/spark/util/collection/ExternalAppendOnlyMap.scala @@ -27,10 +27,12 @@ import com.google.common.io.ByteStreams import it.unimi.dsi.fastutil.io.FastBufferedInputStream import org.apache.spark.{Logging, SparkEnv} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.serializer.Serializer import org.apache.spark.storage.{BlockId, BlockManager} /** + * :: DeveloperApi :: * An append-only map that spills sorted content to disk when there is insufficient space for it * to grow. * @@ -55,8 +57,8 @@ import org.apache.spark.storage.{BlockId, BlockManager} * `spark.shuffle.safetyFraction` specifies an additional margin of safety as a fraction of * this threshold, in case map size estimation is not sufficiently accurate. */ - -private[spark] class ExternalAppendOnlyMap[K, V, C]( +@DeveloperApi +class ExternalAppendOnlyMap[K, V, C]( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, diff --git a/core/src/main/scala/org/apache/spark/util/collection/OpenHashMap.scala b/core/src/main/scala/org/apache/spark/util/collection/OpenHashMap.scala index c26f23d50024a..62f99f3981793 100644 --- a/core/src/main/scala/org/apache/spark/util/collection/OpenHashMap.scala +++ b/core/src/main/scala/org/apache/spark/util/collection/OpenHashMap.scala @@ -19,14 +19,17 @@ package org.apache.spark.util.collection import scala.reflect.ClassTag +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A fast hash map implementation for nullable keys. This hash map supports insertions and updates, * but not deletions. This map is about 5X faster than java.util.HashMap, while using much less * space overhead. * * Under the hood, it uses our OpenHashSet implementation. */ -private[spark] +@DeveloperApi class OpenHashMap[K >: Null : ClassTag, @specialized(Long, Int, Double) V: ClassTag]( initialCapacity: Int) extends Iterable[(K, V)] diff --git a/core/src/main/scala/org/apache/spark/util/random/Pseudorandom.scala b/core/src/main/scala/org/apache/spark/util/random/Pseudorandom.scala index 98569143ee1e3..70f3dd62b9b19 100644 --- a/core/src/main/scala/org/apache/spark/util/random/Pseudorandom.scala +++ b/core/src/main/scala/org/apache/spark/util/random/Pseudorandom.scala @@ -17,9 +17,13 @@ package org.apache.spark.util.random +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A class with pseudorandom behavior. */ +@DeveloperApi trait Pseudorandom { /** Set random seed. */ def setSeed(seed: Long) diff --git a/core/src/main/scala/org/apache/spark/util/random/RandomSampler.scala b/core/src/main/scala/org/apache/spark/util/random/RandomSampler.scala index 0f1fca4813ba9..37a6b04f5200f 100644 --- a/core/src/main/scala/org/apache/spark/util/random/RandomSampler.scala +++ b/core/src/main/scala/org/apache/spark/util/random/RandomSampler.scala @@ -22,7 +22,10 @@ import java.util.Random import cern.jet.random.Poisson import cern.jet.random.engine.DRand +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: * A pseudorandom sampler. It is possible to change the sampled item type. For example, we might * want to add weights for stratified sampling or importance sampling. Should only use * transformations that are tied to the sampler and cannot be applied after sampling. @@ -30,6 +33,7 @@ import cern.jet.random.engine.DRand * @tparam T item type * @tparam U sampled item type */ +@DeveloperApi trait RandomSampler[T, U] extends Pseudorandom with Cloneable with Serializable { /** take a random sample */ @@ -40,6 +44,7 @@ trait RandomSampler[T, U] extends Pseudorandom with Cloneable with Serializable } /** + * :: DeveloperApi :: * A sampler based on Bernoulli trials. * * @param lb lower bound of the acceptance range @@ -47,6 +52,7 @@ trait RandomSampler[T, U] extends Pseudorandom with Cloneable with Serializable * @param complement whether to use the complement of the range specified, default to false * @tparam T item type */ +@DeveloperApi class BernoulliSampler[T](lb: Double, ub: Double, complement: Boolean = false) (implicit random: Random = new XORShiftRandom) extends RandomSampler[T, T] { @@ -67,11 +73,13 @@ class BernoulliSampler[T](lb: Double, ub: Double, complement: Boolean = false) } /** + * :: DeveloperApi :: * A sampler based on values drawn from Poisson distribution. * * @param poisson a Poisson random number generator * @tparam T item type */ +@DeveloperApi class PoissonSampler[T](mean: Double) (implicit var poisson: Poisson = new Poisson(mean, new DRand)) extends RandomSampler[T, T] { diff --git a/core/src/test/java/org/apache/spark/JavaAPISuite.java b/core/src/test/java/org/apache/spark/JavaAPISuite.java index 762405be2a8f9..ab2fdac553349 100644 --- a/core/src/test/java/org/apache/spark/JavaAPISuite.java +++ b/core/src/test/java/org/apache/spark/JavaAPISuite.java @@ -18,10 +18,12 @@ package org.apache.spark; import java.io.*; +import java.lang.StringBuilder; import java.util.*; import scala.Tuple2; +import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import com.google.common.base.Optional; import com.google.common.base.Charsets; @@ -197,7 +199,7 @@ public void lookup() { new Tuple2("Oranges", "Citrus") )); Assert.assertEquals(2, categories.lookup("Oranges").size()); - Assert.assertEquals(2, categories.groupByKey().lookup("Oranges").get(0).size()); + Assert.assertEquals(2, Iterables.size(categories.groupByKey().lookup("Oranges").get(0))); } @Test @@ -209,15 +211,15 @@ public Boolean call(Integer x) { return x % 2 == 0; } }; - JavaPairRDD> oddsAndEvens = rdd.groupBy(isOdd); + JavaPairRDD> oddsAndEvens = rdd.groupBy(isOdd); Assert.assertEquals(2, oddsAndEvens.count()); - Assert.assertEquals(2, oddsAndEvens.lookup(true).get(0).size()); // Evens - Assert.assertEquals(5, oddsAndEvens.lookup(false).get(0).size()); // Odds + Assert.assertEquals(2, Iterables.size(oddsAndEvens.lookup(true).get(0))); // Evens + Assert.assertEquals(5, Iterables.size(oddsAndEvens.lookup(false).get(0))); // Odds oddsAndEvens = rdd.groupBy(isOdd, 1); Assert.assertEquals(2, oddsAndEvens.count()); - Assert.assertEquals(2, oddsAndEvens.lookup(true).get(0).size()); // Evens - Assert.assertEquals(5, oddsAndEvens.lookup(false).get(0).size()); // Odds + Assert.assertEquals(2, Iterables.size(oddsAndEvens.lookup(true).get(0))); // Evens + Assert.assertEquals(5, Iterables.size(oddsAndEvens.lookup(false).get(0))); // Odds } @SuppressWarnings("unchecked") @@ -232,9 +234,9 @@ public void cogroup() { new Tuple2("Oranges", 2), new Tuple2("Apples", 3) )); - JavaPairRDD, List>> cogrouped = categories.cogroup(prices); - Assert.assertEquals("[Fruit, Citrus]", cogrouped.lookup("Oranges").get(0)._1().toString()); - Assert.assertEquals("[2]", cogrouped.lookup("Oranges").get(0)._2().toString()); + JavaPairRDD, Iterable>> cogrouped = categories.cogroup(prices); + Assert.assertEquals("[Fruit, Citrus]", Iterables.toString(cogrouped.lookup("Oranges").get(0)._1())); + Assert.assertEquals("[2]", Iterables.toString(cogrouped.lookup("Oranges").get(0)._2())); cogrouped.collect(); } diff --git a/core/src/test/scala/org/apache/spark/FailureSuite.scala b/core/src/test/scala/org/apache/spark/FailureSuite.scala index f3fb64d87a2fd..12dbebcb28644 100644 --- a/core/src/test/scala/org/apache/spark/FailureSuite.scala +++ b/core/src/test/scala/org/apache/spark/FailureSuite.scala @@ -72,7 +72,7 @@ class FailureSuite extends FunSuite with LocalSparkContext { throw new Exception("Intentional task failure") } } - (k, v(0) * v(0)) + (k, v.head * v.head) }.collect() FailureSuiteState.synchronized { assert(FailureSuiteState.tasksRun === 4) @@ -137,5 +137,3 @@ class FailureSuite extends FunSuite with LocalSparkContext { // TODO: Need to add tests with shuffle fetch failures. } - - diff --git a/core/src/test/scala/org/apache/spark/PipedRDDSuite.scala b/core/src/test/scala/org/apache/spark/PipedRDDSuite.scala index 627e9b5cd9060..867b28cc0d971 100644 --- a/core/src/test/scala/org/apache/spark/PipedRDDSuite.scala +++ b/core/src/test/scala/org/apache/spark/PipedRDDSuite.scala @@ -85,7 +85,7 @@ class PipedRDDSuite extends FunSuite with SharedSparkContext { (f: String => Unit) => { bl.value.map(f(_)); f("\u0001") }, - (i: Tuple2[String, Seq[String]], f: String => Unit) => { + (i: Tuple2[String, Iterable[String]], f: String => Unit) => { for (e <- i._2) { f(e + "_") } diff --git a/core/src/test/scala/org/apache/spark/executor/ExecutorURLClassLoaderSuite.scala b/core/src/test/scala/org/apache/spark/executor/ExecutorURLClassLoaderSuite.scala new file mode 100644 index 0000000000000..c40cfc0696fce --- /dev/null +++ b/core/src/test/scala/org/apache/spark/executor/ExecutorURLClassLoaderSuite.scala @@ -0,0 +1,67 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.executor + +import java.io.File +import java.net.URLClassLoader + +import org.scalatest.FunSuite + +import org.apache.spark.TestUtils + +class ExecutorURLClassLoaderSuite extends FunSuite { + + val childClassNames = List("FakeClass1", "FakeClass2") + val parentClassNames = List("FakeClass1", "FakeClass2", "FakeClass3") + val urls = List(TestUtils.createJarWithClasses(childClassNames, "1")).toArray + val urls2 = List(TestUtils.createJarWithClasses(parentClassNames, "2")).toArray + + test("child first") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ChildExecutorURLClassLoader(urls, parentLoader) + val fakeClass = classLoader.loadClass("FakeClass2").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "1") + } + + test("parent first") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ExecutorURLClassLoader(urls, parentLoader) + val fakeClass = classLoader.loadClass("FakeClass1").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "2") + } + + test("child first can fall back") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ChildExecutorURLClassLoader(urls, parentLoader) + val fakeClass = classLoader.loadClass("FakeClass3").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "2") + } + + test("child first can fail") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ChildExecutorURLClassLoader(urls, parentLoader) + intercept[java.lang.ClassNotFoundException] { + classLoader.loadClass("FakeClassDoesNotExist").newInstance() + } + } + + +} diff --git a/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala b/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala index f9e994b13dfbc..8f3e6bd21b752 100644 --- a/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala +++ b/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala @@ -225,11 +225,12 @@ class PairRDDFunctionsSuite extends FunSuite with SharedSparkContext { val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w'))) val joined = rdd1.groupWith(rdd2).collect() assert(joined.size === 4) - assert(joined.toSet === Set( - (1, (ArrayBuffer(1, 2), ArrayBuffer('x'))), - (2, (ArrayBuffer(1), ArrayBuffer('y', 'z'))), - (3, (ArrayBuffer(1), ArrayBuffer())), - (4, (ArrayBuffer(), ArrayBuffer('w'))) + val joinedSet = joined.map(x => (x._1, (x._2._1.toList, x._2._2.toList))).toSet + assert(joinedSet === Set( + (1, (List(1, 2), List('x'))), + (2, (List(1), List('y', 'z'))), + (3, (List(1), List())), + (4, (List(), List('w'))) )) } @@ -447,4 +448,3 @@ class ConfigTestFormat() extends FakeFormat() with Configurable { super.getRecordWriter(p1) } } - diff --git a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala index ce567b0cde85d..a74724d785ad3 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala @@ -18,7 +18,7 @@ package org.apache.spark.scheduler import scala.Tuple2 -import scala.collection.mutable.{HashMap, Map} +import scala.collection.mutable.{HashSet, HashMap, Map} import org.scalatest.{BeforeAndAfter, FunSuite} @@ -43,6 +43,10 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont val conf = new SparkConf /** Set of TaskSets the DAGScheduler has requested executed. */ val taskSets = scala.collection.mutable.Buffer[TaskSet]() + + /** Stages for which the DAGScheduler has called TaskScheduler.cancelTasks(). */ + val cancelledStages = new HashSet[Int]() + val taskScheduler = new TaskScheduler() { override def rootPool: Pool = null override def schedulingMode: SchedulingMode = SchedulingMode.NONE @@ -53,11 +57,28 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont taskSet.tasks.foreach(_.epoch = mapOutputTracker.getEpoch) taskSets += taskSet } - override def cancelTasks(stageId: Int) {} + override def cancelTasks(stageId: Int) { + cancelledStages += stageId + } override def setDAGScheduler(dagScheduler: DAGScheduler) = {} override def defaultParallelism() = 2 } + /** Length of time to wait while draining listener events. */ + val WAIT_TIMEOUT_MILLIS = 10000 + val sparkListener = new SparkListener() { + val successfulStages = new HashSet[Int]() + val failedStages = new HashSet[Int]() + override def onStageCompleted(stageCompleted: SparkListenerStageCompleted) { + val stageInfo = stageCompleted.stageInfo + if (stageInfo.failureReason.isEmpty) { + successfulStages += stageInfo.stageId + } else { + failedStages += stageInfo.stageId + } + } + } + var mapOutputTracker: MapOutputTrackerMaster = null var scheduler: DAGScheduler = null @@ -83,14 +104,18 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont /** The list of results that DAGScheduler has collected. */ val results = new HashMap[Int, Any]() var failure: Exception = _ - val listener = new JobListener() { + val jobListener = new JobListener() { override def taskSucceeded(index: Int, result: Any) = results.put(index, result) override def jobFailed(exception: Exception) = { failure = exception } } before { sc = new SparkContext("local", "DAGSchedulerSuite") + sparkListener.successfulStages.clear() + sparkListener.failedStages.clear() + sc.addSparkListener(sparkListener) taskSets.clear() + cancelledStages.clear() cacheLocations.clear() results.clear() mapOutputTracker = new MapOutputTrackerMaster(conf) @@ -174,15 +199,16 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont } } - /** Sends the rdd to the scheduler for scheduling. */ + /** Sends the rdd to the scheduler for scheduling and returns the job id. */ private def submit( rdd: RDD[_], partitions: Array[Int], func: (TaskContext, Iterator[_]) => _ = jobComputeFunc, allowLocal: Boolean = false, - listener: JobListener = listener) { + listener: JobListener = jobListener): Int = { val jobId = scheduler.nextJobId.getAndIncrement() runEvent(JobSubmitted(jobId, rdd, func, partitions, allowLocal, null, listener)) + return jobId } /** Sends TaskSetFailed to the scheduler. */ @@ -190,6 +216,11 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont runEvent(TaskSetFailed(taskSet, message)) } + /** Sends JobCancelled to the DAG scheduler. */ + private def cancel(jobId: Int) { + runEvent(JobCancelled(jobId)) + } + test("zero split job") { val rdd = makeRdd(0, Nil) var numResults = 0 @@ -218,7 +249,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont override def toString = "DAGSchedulerSuite Local RDD" } val jobId = scheduler.nextJobId.getAndIncrement() - runEvent(JobSubmitted(jobId, rdd, jobComputeFunc, Array(0), true, null, listener)) + runEvent(JobSubmitted(jobId, rdd, jobComputeFunc, Array(0), true, null, jobListener)) assert(results === Map(0 -> 42)) assertDataStructuresEmpty } @@ -248,7 +279,21 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont test("trivial job failure") { submit(makeRdd(1, Nil), Array(0)) failed(taskSets(0), "some failure") - assert(failure.getMessage === "Job aborted: some failure") + assert(failure.getMessage === "Job aborted due to stage failure: some failure") + assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + assert(sparkListener.failedStages.contains(0)) + assert(sparkListener.failedStages.size === 1) + assertDataStructuresEmpty + } + + test("trivial job cancellation") { + val rdd = makeRdd(1, Nil) + val jobId = submit(rdd, Array(0)) + cancel(jobId) + assert(failure.getMessage === s"Job $jobId cancelled") + assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + assert(sparkListener.failedStages.contains(0)) + assert(sparkListener.failedStages.size === 1) assertDataStructuresEmpty } @@ -323,6 +368,82 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont assertDataStructuresEmpty } + test("run shuffle with map stage failure") { + val shuffleMapRdd = makeRdd(2, Nil) + val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) + val reduceRdd = makeRdd(2, List(shuffleDep)) + submit(reduceRdd, Array(0, 1)) + + // Fail the map stage. This should cause the entire job to fail. + val stageFailureMessage = "Exception failure in map stage" + failed(taskSets(0), stageFailureMessage) + assert(failure.getMessage === s"Job aborted due to stage failure: $stageFailureMessage") + + // Listener bus should get told about the map stage failing, but not the reduce stage + // (since the reduce stage hasn't been started yet). + assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + assert(sparkListener.failedStages.contains(1)) + assert(sparkListener.failedStages.size === 1) + + assertDataStructuresEmpty + } + + /** + * Makes sure that failures of stage used by multiple jobs are correctly handled. + * + * This test creates the following dependency graph: + * + * shuffleMapRdd1 shuffleMapRDD2 + * | \ | + * | \ | + * | \ | + * | \ | + * reduceRdd1 reduceRdd2 + * + * We start both shuffleMapRdds and then fail shuffleMapRdd1. As a result, the job listeners for + * reduceRdd1 and reduceRdd2 should both be informed that the job failed. shuffleMapRDD2 should + * also be cancelled, because it is only used by reduceRdd2 and reduceRdd2 cannot complete + * without shuffleMapRdd1. + */ + test("failure of stage used by two jobs") { + val shuffleMapRdd1 = makeRdd(2, Nil) + val shuffleDep1 = new ShuffleDependency(shuffleMapRdd1, null) + val shuffleMapRdd2 = makeRdd(2, Nil) + val shuffleDep2 = new ShuffleDependency(shuffleMapRdd2, null) + + val reduceRdd1 = makeRdd(2, List(shuffleDep1)) + val reduceRdd2 = makeRdd(2, List(shuffleDep1, shuffleDep2)) + + // We need to make our own listeners for this test, since by default submit uses the same + // listener for all jobs, and here we want to capture the failure for each job separately. + class FailureRecordingJobListener() extends JobListener { + var failureMessage: String = _ + override def taskSucceeded(index: Int, result: Any) {} + override def jobFailed(exception: Exception) = { failureMessage = exception.getMessage } + } + val listener1 = new FailureRecordingJobListener() + val listener2 = new FailureRecordingJobListener() + + submit(reduceRdd1, Array(0, 1), listener=listener1) + submit(reduceRdd2, Array(0, 1), listener=listener2) + + val stageFailureMessage = "Exception failure in map stage" + failed(taskSets(0), stageFailureMessage) + + assert(cancelledStages.contains(1)) + + // Make sure the listeners got told about both failed stages. + assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + assert(sparkListener.successfulStages.isEmpty) + assert(sparkListener.failedStages.contains(1)) + assert(sparkListener.failedStages.contains(3)) + assert(sparkListener.failedStages.size === 2) + + assert(listener1.failureMessage === s"Job aborted due to stage failure: $stageFailureMessage") + assert(listener2.failureMessage === s"Job aborted due to stage failure: $stageFailureMessage") + assertDataStructuresEmpty + } + test("run trivial shuffle with out-of-band failure and retry") { val shuffleMapRdd = makeRdd(2, Nil) val shuffleDep = new ShuffleDependency(shuffleMapRdd, null) diff --git a/core/src/test/scala/org/apache/spark/util/JsonProtocolSuite.scala b/core/src/test/scala/org/apache/spark/util/JsonProtocolSuite.scala index 7bab7da8fed68..0342a8aff3c28 100644 --- a/core/src/test/scala/org/apache/spark/util/JsonProtocolSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/JsonProtocolSuite.scala @@ -89,7 +89,7 @@ class JsonProtocolSuite extends FunSuite { // JobResult val exception = new Exception("Out of Memory! Please restock film.") exception.setStackTrace(stackTrace) - val jobFailed = JobFailed(exception, 2) + val jobFailed = JobFailed(exception) testJobResult(JobSucceeded) testJobResult(jobFailed) @@ -294,7 +294,6 @@ class JsonProtocolSuite extends FunSuite { (result1, result2) match { case (JobSucceeded, JobSucceeded) => case (r1: JobFailed, r2: JobFailed) => - assert(r1.failedStageId === r2.failedStageId) assertEquals(r1.exception, r2.exception) case _ => fail("Job results don't match in types!") } diff --git a/core/src/test/scala/org/apache/spark/util/collection/ExternalAppendOnlyMapSuite.scala b/core/src/test/scala/org/apache/spark/util/collection/ExternalAppendOnlyMapSuite.scala index fce1184d46364..cdebefb67510c 100644 --- a/core/src/test/scala/org/apache/spark/util/collection/ExternalAppendOnlyMapSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/collection/ExternalAppendOnlyMapSuite.scala @@ -174,9 +174,9 @@ class ExternalAppendOnlyMapSuite extends FunSuite with LocalSparkContext { assert(result1.toSet == Set[(Int, Int)]((0, 5), (1, 5))) // groupByKey - val result2 = rdd.groupByKey().collect() + val result2 = rdd.groupByKey().collect().map(x => (x._1, x._2.toList)).toSet assert(result2.toSet == Set[(Int, Seq[Int])] - ((0, ArrayBuffer[Int](1, 1, 1, 1, 1)), (1, ArrayBuffer[Int](1, 1, 1, 1, 1)))) + ((0, List[Int](1, 1, 1, 1, 1)), (1, List[Int](1, 1, 1, 1, 1)))) } test("simple cogroup") { diff --git a/docs/_config.yml b/docs/_config.yml index d585b8c5ea763..bd5ed6c9220d2 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -7,6 +7,6 @@ SPARK_VERSION: 1.0.0-SNAPSHOT SPARK_VERSION_SHORT: 1.0.0 SCALA_BINARY_VERSION: "2.10" SCALA_VERSION: "2.10.4" -MESOS_VERSION: 0.13.0 +MESOS_VERSION: 0.17.0 SPARK_ISSUE_TRACKER_URL: https://spark-project.atlassian.net SPARK_GITHUB_URL: https://github.com/apache/spark diff --git a/docs/_plugins/copy_api_dirs.rb b/docs/_plugins/copy_api_dirs.rb index 2245bcbc70f1e..bbd56d2fd13bb 100644 --- a/docs/_plugins/copy_api_dirs.rb +++ b/docs/_plugins/copy_api_dirs.rb @@ -24,7 +24,9 @@ external_projects = ["flume", "kafka", "mqtt", "twitter", "zeromq"] sql_projects = ["catalyst", "core", "hive"] - projects = core_projects + external_projects.map { |project_name| "external/" + project_name } + projects = core_projects + projects = projects + external_projects.map { |project_name| "external/" + project_name } + projects = projects + sql_projects.map { |project_name| "sql/" + project_name } puts "Moving to project root and building scaladoc." curr_dir = pwd @@ -42,24 +44,22 @@ source = "../" + project_name + "/target/scala-2.10/api" dest = "api/" + project_name - puts "echo making directory " + dest + puts "making directory " + dest mkdir_p dest # From the rubydoc: cp_r('src', 'dest') makes src/dest, but this doesn't. puts "cp -r " + source + "/. " + dest cp_r(source + "/.", dest) - end - - sql_projects.each do |project_name| - source = "../sql/" + project_name + "/target/scala-2.10/api/" - dest = "api/sql/" + project_name - puts "echo making directory " + dest - mkdir_p dest + # Append custom JavaScript + js = File.readlines("./js/api-docs.js") + js_file = dest + "/lib/template.js" + File.open(js_file, 'a') { |f| f.write("\n" + js.join()) } - # From the rubydoc: cp_r('src', 'dest') makes src/dest, but this doesn't. - puts "cp -r " + source + "/. " + dest - cp_r(source + "/.", dest) + # Append custom CSS + css = File.readlines("./css/api-docs.css") + css_file = dest + "/lib/template.css" + File.open(css_file, 'a') { |f| f.write("\n" + css.join()) } end # Build Epydoc for Python diff --git a/docs/configuration.md b/docs/configuration.md index 57bda20edcdf1..9c602402f0635 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -596,6 +596,15 @@ Apart from these, the following properties are also available, and may be useful the driver. + + spark.files.userClassPathFirst + false + + (Experimental) Whether to give user-added jars precedence over Spark's own jars when + loading classes in Executors. This feature can be used to mitigate conflicts between + Spark's dependencies and user dependencies. It is currently an experimental feature. + + spark.authenticate false diff --git a/docs/css/api-docs.css b/docs/css/api-docs.css new file mode 100644 index 0000000000000..b2d1d7f869790 --- /dev/null +++ b/docs/css/api-docs.css @@ -0,0 +1,18 @@ +/* Dynamically injected style for the API docs */ + +.developer { + background-color: #44751E; +} + +.experimental { + background-color: #257080; +} + +.alphaComponent { + background-color: #bb0000; +} + +.badge { + font-family: Arial, san-serif; + float: right; +} diff --git a/docs/js/api-docs.js b/docs/js/api-docs.js new file mode 100644 index 0000000000000..1414b6d0b81a1 --- /dev/null +++ b/docs/js/api-docs.js @@ -0,0 +1,26 @@ +/* Dynamically injected post-processing code for the API docs */ + +$(document).ready(function() { + var annotations = $("dt:contains('Annotations')").next("dd").children("span.name"); + addBadges(annotations, "AlphaComponent", ":: AlphaComponent ::", "Alpha Component"); + addBadges(annotations, "DeveloperApi", ":: DeveloperApi ::", "Developer API"); + addBadges(annotations, "Experimental", ":: Experimental ::", "Experimental"); +}); + +function addBadges(allAnnotations, name, tag, html) { + var annotations = allAnnotations.filter(":contains('" + name + "')") + var tags = $(".cmt:contains(" + tag + ")") + + // Remove identifier tags from comments + tags.each(function(index) { + var oldHTML = $(this).html(); + var newHTML = oldHTML.replace(tag, ""); + $(this).html(newHTML); + }); + + // Add badges to all containers + tags.prevAll("h4.signature") + .add(annotations.closest("div.fullcommenttop")) + .add(annotations.closest("div.fullcomment").prevAll("h4.signature")) + .prepend(html); +} diff --git a/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java b/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java index eb70fb547564c..8513ba07e7705 100644 --- a/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java +++ b/examples/src/main/java/org/apache/spark/examples/JavaPageRank.java @@ -17,7 +17,10 @@ package org.apache.spark.examples; + import scala.Tuple2; + +import com.google.common.collect.Iterables; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; @@ -26,8 +29,9 @@ import org.apache.spark.api.java.function.PairFlatMapFunction; import org.apache.spark.api.java.function.PairFunction; -import java.util.List; import java.util.ArrayList; +import java.util.List; +import java.util.Iterator; import java.util.regex.Pattern; /** @@ -66,7 +70,7 @@ public static void main(String[] args) throws Exception { JavaRDD lines = ctx.textFile(args[1], 1); // Loads all URLs from input file and initialize their neighbors. - JavaPairRDD> links = lines.mapToPair(new PairFunction() { + JavaPairRDD> links = lines.mapToPair(new PairFunction() { @Override public Tuple2 call(String s) { String[] parts = SPACES.split(s); @@ -75,9 +79,9 @@ public Tuple2 call(String s) { }).distinct().groupByKey().cache(); // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. - JavaPairRDD ranks = links.mapValues(new Function, Double>() { + JavaPairRDD ranks = links.mapValues(new Function, Double>() { @Override - public Double call(List rs) { + public Double call(Iterable rs) { return 1.0; } }); @@ -86,12 +90,13 @@ public Double call(List rs) { for (int current = 0; current < Integer.parseInt(args[2]); current++) { // Calculates URL contributions to the rank of other URLs. JavaPairRDD contribs = links.join(ranks).values() - .flatMapToPair(new PairFlatMapFunction, Double>, String, Double>() { + .flatMapToPair(new PairFlatMapFunction, Double>, String, Double>() { @Override - public Iterable> call(Tuple2, Double> s) { + public Iterable> call(Tuple2, Double> s) { + int urlCount = Iterables.size(s._1); List> results = new ArrayList>(); - for (String n : s._1()) { - results.add(new Tuple2(n, s._2() / s._1().size())); + for (String n : s._1) { + results.add(new Tuple2(n, s._2() / urlCount)); } return results; } diff --git a/examples/src/main/scala/org/apache/spark/examples/bagel/WikipediaPageRankStandalone.scala b/examples/src/main/scala/org/apache/spark/examples/bagel/WikipediaPageRankStandalone.scala index 27afa6b642758..7aac6a13597e6 100644 --- a/examples/src/main/scala/org/apache/spark/examples/bagel/WikipediaPageRankStandalone.scala +++ b/examples/src/main/scala/org/apache/spark/examples/bagel/WikipediaPageRankStandalone.scala @@ -115,12 +115,16 @@ object WikipediaPageRankStandalone { var ranks = links.mapValues { edges => defaultRank } for (i <- 1 to numIterations) { val contribs = links.groupWith(ranks).flatMap { - case (id, (linksWrapper, rankWrapper)) => - if (linksWrapper.length > 0) { - if (rankWrapper.length > 0) { - linksWrapper(0).map(dest => (dest, rankWrapper(0) / linksWrapper(0).size)) + case (id, (linksWrapperIterable, rankWrapperIterable)) => + val linksWrapper = linksWrapperIterable.iterator + val rankWrapper = rankWrapperIterable.iterator + if (linksWrapper.hasNext) { + val linksWrapperHead = linksWrapper.next + if (rankWrapper.hasNext) { + val rankWrapperHead = rankWrapper.next + linksWrapperHead.map(dest => (dest, rankWrapperHead / linksWrapperHead.size)) } else { - linksWrapper(0).map(dest => (dest, defaultRank / linksWrapper(0).size)) + linksWrapperHead.map(dest => (dest, defaultRank / linksWrapperHead.size)) } } else { Array[(String, Double)]() diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala deleted file mode 100644 index d4e08c5e12d81..0000000000000 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala +++ /dev/null @@ -1,51 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.examples.mllib - -import org.apache.spark.SparkContext -import org.apache.spark.mllib.linalg.PCA -import org.apache.spark.mllib.linalg.MatrixEntry -import org.apache.spark.mllib.linalg.SparseMatrix -import org.apache.spark.mllib.util._ - - -/** - * Compute PCA of an example matrix. - */ -object SparkPCA { - def main(args: Array[String]) { - if (args.length != 3) { - System.err.println("Usage: SparkPCA m n") - System.exit(1) - } - val sc = new SparkContext(args(0), "PCA", - System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass)) - - val m = args(2).toInt - val n = args(3).toInt - - // Make example matrix - val data = Array.tabulate(m, n) { (a, b) => - (a + 2).toDouble * (b + 1) / (1 + a + b) } - - // recover top principal component - val coeffs = new PCA().setK(1).compute(sc.makeRDD(data)) - - println("top principal component = " + coeffs.mkString(", ")) - } -} diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala deleted file mode 100644 index 2933cec497b37..0000000000000 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala +++ /dev/null @@ -1,59 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.examples.mllib - -import org.apache.spark.SparkContext -import org.apache.spark.mllib.linalg.SVD -import org.apache.spark.mllib.linalg.MatrixEntry -import org.apache.spark.mllib.linalg.SparseMatrix - -/** - * Compute SVD of an example matrix - * Input file should be comma separated, 1 indexed of the form - * i,j,value - * Where i is the column, j the row, and value is the matrix entry - * - * For example input file, see: - * mllib/data/als/test.data (example is 4 x 4) - */ -object SparkSVD { - def main(args: Array[String]) { - if (args.length != 4) { - System.err.println("Usage: SparkSVD m n") - System.exit(1) - } - val sc = new SparkContext(args(0), "SVD", - System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass)) - - // Load and parse the data file - val data = sc.textFile(args(1)).map { line => - val parts = line.split(',') - MatrixEntry(parts(0).toInt - 1, parts(1).toInt - 1, parts(2).toDouble) - } - val m = args(2).toInt - val n = args(3).toInt - - // recover largest singular vector - val decomposed = new SVD().setK(1).compute(SparseMatrix(data, m, n)) - val u = decomposed.U.data - val s = decomposed.S.data - val v = decomposed.V.data - - println("singular values = " + s.collect().mkString) - } -} diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnyPCA.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnyPCA.scala new file mode 100644 index 0000000000000..a177435e606ab --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnyPCA.scala @@ -0,0 +1,64 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import org.apache.spark.{SparkConf, SparkContext} +import org.apache.spark.mllib.linalg.distributed.RowMatrix +import org.apache.spark.mllib.linalg.Vectors + +/** + * Compute the principal components of a tall-and-skinny matrix, whose rows are observations. + * + * The input matrix must be stored in row-oriented dense format, one line per row with its entries + * separated by space. For example, + * {{{ + * 0.5 1.0 + * 2.0 3.0 + * 4.0 5.0 + * }}} + * represents a 3-by-2 matrix, whose first row is (0.5, 1.0). + */ +object TallSkinnyPCA { + def main(args: Array[String]) { + if (args.length != 2) { + System.err.println("Usage: TallSkinnyPCA ") + System.exit(1) + } + + val conf = new SparkConf() + .setMaster(args(0)) + .setAppName("TallSkinnyPCA") + .setSparkHome(System.getenv("SPARK_HOME")) + .setJars(SparkContext.jarOfClass(this.getClass)) + val sc = new SparkContext(conf) + + // Load and parse the data file. + val rows = sc.textFile(args(1)).map { line => + val values = line.split(' ').map(_.toDouble) + Vectors.dense(values) + } + val mat = new RowMatrix(rows) + + // Compute principal components. + val pc = mat.computePrincipalComponents(mat.numCols().toInt) + + println("Principal components are:\n" + pc) + + sc.stop() + } +} diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnySVD.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnySVD.scala new file mode 100644 index 0000000000000..49d09692c8e4a --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/TallSkinnySVD.scala @@ -0,0 +1,64 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import org.apache.spark.{SparkConf, SparkContext} +import org.apache.spark.mllib.linalg.distributed.RowMatrix +import org.apache.spark.mllib.linalg.Vectors + +/** + * Compute the singular value decomposition (SVD) of a tall-and-skinny matrix. + * + * The input matrix must be stored in row-oriented dense format, one line per row with its entries + * separated by space. For example, + * {{{ + * 0.5 1.0 + * 2.0 3.0 + * 4.0 5.0 + * }}} + * represents a 3-by-2 matrix, whose first row is (0.5, 1.0). + */ +object TallSkinnySVD { + def main(args: Array[String]) { + if (args.length != 2) { + System.err.println("Usage: TallSkinnySVD ") + System.exit(1) + } + + val conf = new SparkConf() + .setMaster(args(0)) + .setAppName("TallSkinnySVD") + .setSparkHome(System.getenv("SPARK_HOME")) + .setJars(SparkContext.jarOfClass(this.getClass)) + val sc = new SparkContext(conf) + + // Load and parse the data file. + val rows = sc.textFile(args(1)).map { line => + val values = line.split(' ').map(_.toDouble) + Vectors.dense(values) + } + val mat = new RowMatrix(rows) + + // Compute SVD. + val svd = mat.computeSVD(mat.numCols().toInt) + + println("Singular values are " + svd.s) + + sc.stop() + } +} diff --git a/extras/java8-tests/src/test/java/org/apache/spark/Java8APISuite.java b/extras/java8-tests/src/test/java/org/apache/spark/Java8APISuite.java index f67251217ed4a..7eb8b45fc3cf0 100644 --- a/extras/java8-tests/src/test/java/org/apache/spark/Java8APISuite.java +++ b/extras/java8-tests/src/test/java/org/apache/spark/Java8APISuite.java @@ -23,6 +23,7 @@ import scala.Tuple2; +import com.google.common.collections.Iterables; import com.google.common.base.Optional; import com.google.common.io.Files; import org.apache.hadoop.io.IntWritable; @@ -85,15 +86,15 @@ public void foreach() { public void groupBy() { JavaRDD rdd = sc.parallelize(Arrays.asList(1, 1, 2, 3, 5, 8, 13)); Function isOdd = x -> x % 2 == 0; - JavaPairRDD> oddsAndEvens = rdd.groupBy(isOdd); + JavaPairRDD> oddsAndEvens = rdd.groupBy(isOdd); Assert.assertEquals(2, oddsAndEvens.count()); - Assert.assertEquals(2, oddsAndEvens.lookup(true).get(0).size()); // Evens - Assert.assertEquals(5, oddsAndEvens.lookup(false).get(0).size()); // Odds + Assert.assertEquals(2, Iterables.size(oddsAndEvens.lookup(true).get(0))); // Evens + Assert.assertEquals(5, Iterables.size(oddsAndEvens.lookup(false).get(0))); // Odds oddsAndEvens = rdd.groupBy(isOdd, 1); Assert.assertEquals(2, oddsAndEvens.count()); - Assert.assertEquals(2, oddsAndEvens.lookup(true).get(0).size()); // Evens - Assert.assertEquals(5, oddsAndEvens.lookup(false).get(0).size()); // Odds + Assert.assertEquals(2, Iterables.size(oddsAndEvens.lookup(true).get(0))); // Evens + Assert.assertEquals(5, Iterables.size(oddsAndEvens.lookup(false).get(0))); // Odds } @Test diff --git a/graphx/src/main/scala/org/apache/spark/graphx/package.scala b/graphx/src/main/scala/org/apache/spark/graphx/package.scala index 425a5164cad24..ff17edeaf8f16 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/package.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/package.scala @@ -19,7 +19,10 @@ package org.apache.spark import org.apache.spark.util.collection.OpenHashSet -/** GraphX is a graph processing framework built on top of Spark. */ +/** + * ALPHA COMPONENT + * GraphX is a graph processing framework built on top of Spark. + */ package object graphx { /** * A 64-bit vertex identifier that uniquely identifies a vertex within a graph. It does not need diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala index 2df5b0d02b699..ae27c57799873 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala @@ -19,6 +19,7 @@ package org.apache.spark.mllib.api.python import java.nio.{ByteBuffer, ByteOrder} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.api.java.JavaRDD import org.apache.spark.mllib.classification._ import org.apache.spark.mllib.clustering._ @@ -28,8 +29,11 @@ import org.apache.spark.mllib.regression._ import org.apache.spark.rdd.RDD /** + * :: DeveloperApi :: + * * The Java stubs necessary for the Python mllib bindings. */ +@DeveloperApi class PythonMLLibAPI extends Serializable { private def deserializeDoubleVector(bytes: Array[Byte]): Array[Double] = { val packetLength = bytes.length diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala index 798f3a5c94740..4f9eaacf67fe4 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala @@ -55,7 +55,7 @@ class LogisticRegressionModel( this } - override def predictPoint(dataMatrix: Vector, weightMatrix: Vector, + override protected def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double) = { val margin = weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept val score = 1.0/ (1.0 + math.exp(-margin)) @@ -71,27 +71,27 @@ class LogisticRegressionModel( * NOTE: Labels used in Logistic Regression should be {0, 1} */ class LogisticRegressionWithSGD private ( - var stepSize: Double, - var numIterations: Int, - var regParam: Double, - var miniBatchFraction: Double) + private var stepSize: Double, + private var numIterations: Int, + private var regParam: Double, + private var miniBatchFraction: Double) extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { - val gradient = new LogisticGradient() - val updater = new SimpleUpdater() + private val gradient = new LogisticGradient() + private val updater = new SimpleUpdater() override val optimizer = new GradientDescent(gradient, updater) .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) - override val validators = List(DataValidators.classificationLabels) + override protected val validators = List(DataValidators.binaryLabelValidator) /** * Construct a LogisticRegression object with default parameters */ def this() = this(1.0, 100, 0.0, 1.0) - def createModel(weights: Vector, intercept: Double) = { + override protected def createModel(weights: Vector, intercept: Double) = { new LogisticRegressionModel(weights, intercept) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala index e956185319a69..5a45f12f1aa12 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala @@ -19,6 +19,7 @@ package org.apache.spark.mllib.classification import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV, argmax => brzArgmax, sum => brzSum} +import org.apache.spark.annotation.Experimental import org.apache.spark.{Logging, SparkContext} import org.apache.spark.SparkContext._ import org.apache.spark.mllib.linalg.Vector @@ -27,11 +28,16 @@ import org.apache.spark.mllib.util.MLUtils import org.apache.spark.rdd.RDD /** + * :: Experimental :: + * * Model for Naive Bayes Classifiers. * - * @param pi Log of class priors, whose dimension is C. - * @param theta Log of class conditional probabilities, whose dimension is CxD. + * @param labels list of labels + * @param pi log of class priors, whose dimension is C, number of labels + * @param theta log of class conditional probabilities, whose dimension is C-by-D, + * where D is number of features */ +@Experimental class NaiveBayesModel( val labels: Array[Double], val pi: Array[Double], @@ -40,14 +46,17 @@ class NaiveBayesModel( private val brzPi = new BDV[Double](pi) private val brzTheta = new BDM[Double](theta.length, theta(0).length) - var i = 0 - while (i < theta.length) { - var j = 0 - while (j < theta(i).length) { - brzTheta(i, j) = theta(i)(j) - j += 1 + { + // Need to put an extra pair of braces to prevent Scala treating `i` as a member. + var i = 0 + while (i < theta.length) { + var j = 0 + while (j < theta(i).length) { + brzTheta(i, j) = theta(i)(j) + j += 1 + } + i += 1 } - i += 1 } override def predict(testData: RDD[Vector]): RDD[Double] = testData.map(predict) @@ -65,7 +74,7 @@ class NaiveBayesModel( * document classification. By making every vector a 0-1 vector, it can also be used as * Bernoulli NB ([[http://tinyurl.com/p7c96j6]]). */ -class NaiveBayes private (var lambda: Double) extends Serializable with Logging { +class NaiveBayes private (private var lambda: Double) extends Serializable with Logging { def this() = this(1.0) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala index e31a08899f8bc..956654b1fe90a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala @@ -55,7 +55,9 @@ class SVMModel( this } - override def predictPoint(dataMatrix: Vector, weightMatrix: Vector, + override protected def predictPoint( + dataMatrix: Vector, + weightMatrix: Vector, intercept: Double) = { val margin = weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept threshold match { @@ -70,28 +72,27 @@ class SVMModel( * NOTE: Labels used in SVM should be {0, 1}. */ class SVMWithSGD private ( - var stepSize: Double, - var numIterations: Int, - var regParam: Double, - var miniBatchFraction: Double) + private var stepSize: Double, + private var numIterations: Int, + private var regParam: Double, + private var miniBatchFraction: Double) extends GeneralizedLinearAlgorithm[SVMModel] with Serializable { - val gradient = new HingeGradient() - val updater = new SquaredL2Updater() + private val gradient = new HingeGradient() + private val updater = new SquaredL2Updater() override val optimizer = new GradientDescent(gradient, updater) .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) - - override val validators = List(DataValidators.classificationLabels) + override protected val validators = List(DataValidators.binaryLabelValidator) /** * Construct a SVM object with default parameters */ def this() = this(1.0, 100, 1.0, 1.0) - def createModel(weights: Vector, intercept: Double) = { + override protected def createModel(weights: Vector, intercept: Double) = { new SVMModel(weights, intercept) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala index a78503df3134d..8f565eb60a60f 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala @@ -21,6 +21,7 @@ import scala.collection.mutable.ArrayBuffer import breeze.linalg.{DenseVector => BDV, Vector => BV, norm => breezeNorm} +import org.apache.spark.annotation.Experimental import org.apache.spark.{Logging, SparkContext} import org.apache.spark.SparkContext._ import org.apache.spark.mllib.linalg.{Vector, Vectors} @@ -37,12 +38,17 @@ import org.apache.spark.util.random.XORShiftRandom * to it should be cached by the user. */ class KMeans private ( - var k: Int, - var maxIterations: Int, - var runs: Int, - var initializationMode: String, - var initializationSteps: Int, - var epsilon: Double) extends Serializable with Logging { + private var k: Int, + private var maxIterations: Int, + private var runs: Int, + private var initializationMode: String, + private var initializationSteps: Int, + private var epsilon: Double) extends Serializable with Logging { + + /** + * Constructs a KMeans instance with default parameters: {k: 2, maxIterations: 20, runs: 1, + * initializationMode: "k-means||", initializationSteps: 5, epsilon: 1e-4}. + */ def this() = this(2, 20, 1, KMeans.K_MEANS_PARALLEL, 5, 1e-4) /** Set the number of clusters to create (k). Default: 2. */ @@ -71,6 +77,8 @@ class KMeans private ( } /** + * :: Experimental :: + * * Set the number of runs of the algorithm to execute in parallel. We initialize the algorithm * this many times with random starting conditions (configured by the initialization mode), then * return the best clustering found over any run. Default: 1. @@ -316,8 +324,8 @@ object KMeans { data: RDD[Vector], k: Int, maxIterations: Int, - runs: Int = 1, - initializationMode: String = K_MEANS_PARALLEL): KMeansModel = { + runs: Int, + initializationMode: String): KMeansModel = { new KMeans().setK(k) .setMaxIterations(maxIterations) .setRuns(runs) @@ -325,6 +333,27 @@ object KMeans { .run(data) } + /** + * Trains a k-means model using specified parameters and the default values for unspecified. + */ + def train( + data: RDD[Vector], + k: Int, + maxIterations: Int): KMeansModel = { + train(data, k, maxIterations, 1, K_MEANS_PARALLEL) + } + + /** + * Trains a k-means model using specified parameters and the default values for unspecified. + */ + def train( + data: RDD[Vector], + k: Int, + maxIterations: Int, + runs: Int): KMeansModel = { + train(data, k, maxIterations, runs, K_MEANS_PARALLEL) + } + /** * Returns the index of the closest center to the given point, as well as the squared distance. */ @@ -369,6 +398,10 @@ object KMeans { MLUtils.fastSquaredDistance(v1.vector, v1.norm, v2.vector, v2.norm) } + /** + * :: Experimental :: + */ + @Experimental def main(args: Array[String]) { if (args.length < 4) { println("Usage: KMeans []") diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala new file mode 100644 index 0000000000000..b11ba5d30fbd3 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala @@ -0,0 +1,101 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg + +import breeze.linalg.{Matrix => BM, DenseMatrix => BDM} + +/** + * Trait for a local matrix. + */ +trait Matrix extends Serializable { + + /** Number of rows. */ + def numRows: Int + + /** Number of columns. */ + def numCols: Int + + /** Converts to a dense array in column major. */ + def toArray: Array[Double] + + /** Converts to a breeze matrix. */ + private[mllib] def toBreeze: BM[Double] + + /** Gets the (i, j)-th element. */ + private[mllib] def apply(i: Int, j: Int): Double = toBreeze(i, j) + + override def toString: String = toBreeze.toString() +} + +/** + * Column-majored dense matrix. + * The entry values are stored in a single array of doubles with columns listed in sequence. + * For example, the following matrix + * {{{ + * 1.0 2.0 + * 3.0 4.0 + * 5.0 6.0 + * }}} + * is stored as `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]`. + * + * @param numRows number of rows + * @param numCols number of columns + * @param values matrix entries in column major + */ +class DenseMatrix(val numRows: Int, val numCols: Int, val values: Array[Double]) extends Matrix { + + require(values.length == numRows * numCols) + + override def toArray: Array[Double] = values + + private[mllib] override def toBreeze: BM[Double] = new BDM[Double](numRows, numCols, values) +} + +/** + * Factory methods for [[org.apache.spark.mllib.linalg.Matrix]]. + */ +object Matrices { + + /** + * Creates a column-majored dense matrix. + * + * @param numRows number of rows + * @param numCols number of columns + * @param values matrix entries in column major + */ + def dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix = { + new DenseMatrix(numRows, numCols, values) + } + + /** + * Creates a Matrix instance from a breeze matrix. + * @param breeze a breeze matrix + * @return a Matrix instance + */ + private[mllib] def fromBreeze(breeze: BM[Double]): Matrix = { + breeze match { + case dm: BDM[Double] => + require(dm.majorStride == dm.rows, + "Do not support stride size different from the number of rows.") + new DenseMatrix(dm.rows, dm.cols, dm.data) + case _ => + throw new UnsupportedOperationException( + s"Do not support conversion from type ${breeze.getClass.getName}.") + } + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixSVD.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixSVD.scala deleted file mode 100644 index 319f82b449096..0000000000000 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixSVD.scala +++ /dev/null @@ -1,29 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -/** - * Class that represents the SV decomposition of a matrix - * - * @param U such that A = USV^T - * @param S such that A = USV^T - * @param V such that A = USV^T - */ -case class MatrixSVD(val U: SparseMatrix, - val S: SparseMatrix, - val V: SparseMatrix) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala deleted file mode 100644 index fe5b3f6c7e463..0000000000000 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala +++ /dev/null @@ -1,120 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -import org.apache.spark.rdd.RDD - - -import org.jblas.DoubleMatrix - - -/** - * Class used to obtain principal components - */ -class PCA { - private var k = 1 - - /** - * Set the number of top-k principle components to return - */ - def setK(k: Int): PCA = { - this.k = k - this - } - - /** - * Compute PCA using the current set parameters - */ - def compute(matrix: TallSkinnyDenseMatrix): Array[Array[Double]] = { - computePCA(matrix) - } - - /** - * Compute PCA using the parameters currently set - * See computePCA() for more details - */ - def compute(matrix: RDD[Array[Double]]): Array[Array[Double]] = { - computePCA(matrix) - } - - /** - * Computes the top k principal component coefficients for the m-by-n data matrix X. - * Rows of X correspond to observations and columns correspond to variables. - * The coefficient matrix is n-by-k. Each column of coeff contains coefficients - * for one principal component, and the columns are in descending - * order of component variance. - * This function centers the data and uses the - * singular value decomposition (SVD) algorithm. - * - * @param matrix dense matrix to perform PCA on - * @return An nxk matrix with principal components in columns. Columns are inner arrays - */ - private def computePCA(matrix: TallSkinnyDenseMatrix): Array[Array[Double]] = { - val m = matrix.m - val n = matrix.n - - if (m <= 0 || n <= 0) { - throw new IllegalArgumentException("Expecting a well-formed matrix: m=$m n=$n") - } - - computePCA(matrix.rows.map(_.data)) - } - - /** - * Computes the top k principal component coefficients for the m-by-n data matrix X. - * Rows of X correspond to observations and columns correspond to variables. - * The coefficient matrix is n-by-k. Each column of coeff contains coefficients - * for one principal component, and the columns are in descending - * order of component variance. - * This function centers the data and uses the - * singular value decomposition (SVD) algorithm. - * - * @param matrix dense matrix to perform pca on - * @return An nxk matrix of principal components - */ - private def computePCA(matrix: RDD[Array[Double]]): Array[Array[Double]] = { - val n = matrix.first.size - - // compute column sums and normalize matrix - val colSumsTemp = matrix.map((_, 1)).fold((Array.ofDim[Double](n), 0)) { - (a, b) => - val am = new DoubleMatrix(a._1) - val bm = new DoubleMatrix(b._1) - am.addi(bm) - (a._1, a._2 + b._2) - } - - val m = colSumsTemp._2 - val colSums = colSumsTemp._1.map(x => x / m) - - val data = matrix.map { - x => - val row = Array.ofDim[Double](n) - var i = 0 - while (i < n) { - row(i) = x(i) - colSums(i) - i += 1 - } - row - } - - val (u, s, v) = new SVD().setK(k).compute(data) - v - } -} - diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala deleted file mode 100644 index 3e7cc648d1d37..0000000000000 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala +++ /dev/null @@ -1,397 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -import org.apache.spark.SparkContext -import org.apache.spark.SparkContext._ -import org.apache.spark.rdd.RDD - -import org.jblas.{DoubleMatrix, Singular, MatrixFunctions} - -/** - * Class used to obtain singular value decompositions - */ -class SVD { - private var k = 1 - private var computeU = true - - // All singular values smaller than rCond * sigma(0) - // are treated as zero, where sigma(0) is the largest singular value. - private var rCond = 1e-9 - - /** - * Set the number of top-k singular vectors to return - */ - def setK(k: Int): SVD = { - this.k = k - this - } - - /** - * Sets the reciprocal condition number (rCond). All singular values - * smaller than rCond * sigma(0) are treated as zero, - * where sigma(0) is the largest singular value. - */ - def setReciprocalConditionNumber(smallS: Double): SVD = { - this.rCond = smallS - this - } - - /** - * Should U be computed? - */ - def setComputeU(compU: Boolean): SVD = { - this.computeU = compU - this - } - - /** - * Compute SVD using the current set parameters - */ - def compute(matrix: TallSkinnyDenseMatrix): TallSkinnyMatrixSVD = { - denseSVD(matrix) - } - - /** - * Compute SVD using the current set parameters - * Returns (U, S, V) such that A = USV^T - * U is a row-by-row dense matrix - * S is a simple double array of singular values - * V is a 2d array matrix - * See [[denseSVD]] for more documentation - */ - def compute(matrix: RDD[Array[Double]]): - (RDD[Array[Double]], Array[Double], Array[Array[Double]]) = { - denseSVD(matrix) - } - - /** - * See full paramter definition of sparseSVD for more description. - * - * @param matrix sparse matrix to factorize - * @return Three sparse matrices: U, S, V such that A = USV^T - */ - def compute(matrix: SparseMatrix): MatrixSVD = { - sparseSVD(matrix) - } - - /** - * Singular Value Decomposition for Tall and Skinny matrices. - * Given an m x n matrix A, this will compute matrices U, S, V such that - * A = U * S * V' - * - * There is no restriction on m, but we require n^2 doubles to fit in memory. - * Further, n should be less than m. - * - * The decomposition is computed by first computing A'A = V S^2 V', - * computing svd locally on that (since n x n is small), - * from which we recover S and V. - * Then we compute U via easy matrix multiplication - * as U = A * V * S^-1 - * - * Only the k largest singular values and associated vectors are found. - * If there are k such values, then the dimensions of the return will be: - * - * S is k x k and diagonal, holding the singular values on diagonal - * U is m x k and satisfies U'U = eye(k) - * V is n x k and satisfies V'V = eye(k) - * - * @param matrix dense matrix to factorize - * @return See [[TallSkinnyMatrixSVD]] for the output matrices and arrays - */ - private def denseSVD(matrix: TallSkinnyDenseMatrix): TallSkinnyMatrixSVD = { - val m = matrix.m - val n = matrix.n - - if (m < n || m <= 0 || n <= 0) { - throw new IllegalArgumentException("Expecting a tall and skinny matrix m=$m n=$n") - } - - if (k < 1 || k > n) { - throw new IllegalArgumentException("Request up to n singular values n=$n k=$k") - } - - val rowIndices = matrix.rows.map(_.i) - - // compute SVD - val (u, sigma, v) = denseSVD(matrix.rows.map(_.data)) - - if (computeU) { - // prep u for returning - val retU = TallSkinnyDenseMatrix( - u.zip(rowIndices).map { - case (row, i) => MatrixRow(i, row) - }, - m, - k) - - TallSkinnyMatrixSVD(retU, sigma, v) - } else { - TallSkinnyMatrixSVD(null, sigma, v) - } - } - - /** - * Singular Value Decomposition for Tall and Skinny matrices. - * Given an m x n matrix A, this will compute matrices U, S, V such that - * A = U * S * V' - * - * There is no restriction on m, but we require n^2 doubles to fit in memory. - * Further, n should be less than m. - * - * The decomposition is computed by first computing A'A = V S^2 V', - * computing svd locally on that (since n x n is small), - * from which we recover S and V. - * Then we compute U via easy matrix multiplication - * as U = A * V * S^-1 - * - * Only the k largest singular values and associated vectors are found. - * If there are k such values, then the dimensions of the return will be: - * - * S is k x k and diagonal, holding the singular values on diagonal - * U is m x k and satisfies U'U = eye(k) - * V is n x k and satisfies V'V = eye(k) - * - * The return values are as lean as possible: an RDD of rows for U, - * a simple array for sigma, and a dense 2d matrix array for V - * - * @param matrix dense matrix to factorize - * @return Three matrices: U, S, V such that A = USV^T - */ - private def denseSVD(matrix: RDD[Array[Double]]): - (RDD[Array[Double]], Array[Double], Array[Array[Double]]) = { - val n = matrix.first.size - - if (k < 1 || k > n) { - throw new IllegalArgumentException( - "Request up to n singular values k=$k n=$n") - } - - // Compute A^T A - val fullata = matrix.mapPartitions { - iter => - val localATA = Array.ofDim[Double](n, n) - while (iter.hasNext) { - val row = iter.next() - var i = 0 - while (i < n) { - var j = 0 - while (j < n) { - localATA(i)(j) += row(i) * row(j) - j += 1 - } - i += 1 - } - } - Iterator(localATA) - }.fold(Array.ofDim[Double](n, n)) { - (a, b) => - var i = 0 - while (i < n) { - var j = 0 - while (j < n) { - a(i)(j) += b(i)(j) - j += 1 - } - i += 1 - } - a - } - - // Construct jblas A^T A locally - val ata = new DoubleMatrix(fullata) - - // Since A^T A is small, we can compute its SVD directly - val svd = Singular.sparseSVD(ata) - val V = svd(0) - val sigmas = MatrixFunctions.sqrt(svd(1)).toArray.filter(x => x / svd(1).get(0) > rCond) - - val sk = Math.min(k, sigmas.size) - val sigma = sigmas.take(sk) - - // prepare V for returning - val retV = Array.tabulate(n, sk)((i, j) => V.get(i, j)) - - if (computeU) { - // Compute U as U = A V S^-1 - // Compute VS^-1 - val vsinv = new DoubleMatrix(Array.tabulate(n, sk)((i, j) => V.get(i, j) / sigma(j))) - val retU = matrix.map { - x => - val v = new DoubleMatrix(Array(x)) - v.mmul(vsinv).data - } - (retU, sigma, retV) - } else { - (null, sigma, retV) - } - } - - /** - * Singular Value Decomposition for Tall and Skinny sparse matrices. - * Given an m x n matrix A, this will compute matrices U, S, V such that - * A = U * S * V' - * - * There is no restriction on m, but we require O(n^2) doubles to fit in memory. - * Further, n should be less than m. - * - * The decomposition is computed by first computing A'A = V S^2 V', - * computing svd locally on that (since n x n is small), - * from which we recover S and V. - * Then we compute U via easy matrix multiplication - * as U = A * V * S^-1 - * - * Only the k largest singular values and associated vectors are found. - * If there are k such values, then the dimensions of the return will be: - * - * S is k x k and diagonal, holding the singular values on diagonal - * U is m x k and satisfies U'U = eye(k) - * V is n x k and satisfies V'V = eye(k) - * - * All input and output is expected in sparse matrix format, 0-indexed - * as tuples of the form ((i,j),value) all in RDDs using the - * SparseMatrix class - * - * @param matrix sparse matrix to factorize - * @return Three sparse matrices: U, S, V such that A = USV^T - */ - private def sparseSVD(matrix: SparseMatrix): MatrixSVD = { - val data = matrix.data - val m = matrix.m - val n = matrix.n - - if (m < n || m <= 0 || n <= 0) { - throw new IllegalArgumentException("Expecting a tall and skinny matrix") - } - - if (k < 1 || k > n) { - throw new IllegalArgumentException("Must request up to n singular values") - } - - // Compute A^T A, assuming rows are sparse enough to fit in memory - val rows = data.map(entry => - (entry.i, (entry.j, entry.mval))).groupByKey() - val emits = rows.flatMap { - case (rowind, cols) => - cols.flatMap { - case (colind1, mval1) => - cols.map { - case (colind2, mval2) => - ((colind1, colind2), mval1 * mval2) - } - } - }.reduceByKey(_ + _) - - // Construct jblas A^T A locally - val ata = DoubleMatrix.zeros(n, n) - for (entry <- emits.collect()) { - ata.put(entry._1._1, entry._1._2, entry._2) - } - - // Since A^T A is small, we can compute its SVD directly - val svd = Singular.sparseSVD(ata) - val V = svd(0) - // This will be updated to rcond - val sigmas = MatrixFunctions.sqrt(svd(1)).toArray.filter(x => x > 1e-9) - - if (sigmas.size < k) { - throw new Exception("Not enough singular values to return k=" + k + " s=" + sigmas.size) - } - - val sigma = sigmas.take(k) - - val sc = data.sparkContext - - // prepare V for returning - val retVdata = sc.makeRDD( - Array.tabulate(V.rows, sigma.length) { - (i, j) => - MatrixEntry(i, j, V.get(i, j)) - }.flatten) - val retV = SparseMatrix(retVdata, V.rows, sigma.length) - - val retSdata = sc.makeRDD(Array.tabulate(sigma.length) { - x => MatrixEntry(x, x, sigma(x)) - }) - - val retS = SparseMatrix(retSdata, sigma.length, sigma.length) - - // Compute U as U = A V S^-1 - // turn V S^-1 into an RDD as a sparse matrix - val vsirdd = sc.makeRDD(Array.tabulate(V.rows, sigma.length) { - (i, j) => ((i, j), V.get(i, j) / sigma(j)) - }.flatten) - - if (computeU) { - // Multiply A by VS^-1 - val aCols = data.map(entry => (entry.j, (entry.i, entry.mval))) - val bRows = vsirdd.map(entry => (entry._1._1, (entry._1._2, entry._2))) - val retUdata = aCols.join(bRows).map { - case (key, ((rowInd, rowVal), (colInd, colVal))) => - ((rowInd, colInd), rowVal * colVal) - }.reduceByKey(_ + _).map { - case ((row, col), mval) => MatrixEntry(row, col, mval) - } - - val retU = SparseMatrix(retUdata, m, sigma.length) - MatrixSVD(retU, retS, retV) - } else { - MatrixSVD(null, retS, retV) - } - } -} - -/** - * Top-level methods for calling sparse Singular Value Decomposition - * NOTE: All matrices are 0-indexed - */ -object SVD { - def main(args: Array[String]) { - if (args.length < 8) { - println("Usage: SVD " + - " ") - System.exit(1) - } - - val (master, inputFile, m, n, k, output_u, output_s, output_v) = - (args(0), args(1), args(2).toInt, args(3).toInt, - args(4).toInt, args(5), args(6), args(7)) - - val sc = new SparkContext(master, "SVD") - - val rawData = sc.textFile(inputFile) - val data = rawData.map { - line => - val parts = line.split(',') - MatrixEntry(parts(0).toInt, parts(1).toInt, parts(2).toDouble) - } - - val decomposed = new SVD().setK(k).compute(SparseMatrix(data, m, n)) - val u = decomposed.U.data - val s = decomposed.S.data - val v = decomposed.V.data - - println("Computed " + s.collect().length + " singular values and vectors") - u.saveAsTextFile(output_u) - s.saveAsTextFile(output_s) - v.saveAsTextFile(output_v) - System.exit(0) - } -} - - diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala similarity index 81% rename from mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala rename to mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala index 2608a67bfe260..46b105457430c 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala @@ -17,10 +17,5 @@ package org.apache.spark.mllib.linalg -/** - * Class that represents a row of a dense matrix - * - * @param i row index (0 indexing used) - * @param data entries of the row - */ -case class MatrixRow(val i: Int, val data: Array[Double]) +/** Represents singular value decomposition (SVD) factors. */ +case class SingularValueDecomposition[UType, VType](U: UType, s: Vector, V: VType) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala deleted file mode 100644 index b3a450e92394e..0000000000000 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala +++ /dev/null @@ -1,31 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -/** - * Class that represents the singular value decomposition of a matrix - * - * @param U such that A = USV^T is a TallSkinnyDenseMatrix - * @param S such that A = USV^T is a simple double array - * @param V such that A = USV^T, V is a 2d array matrix that holds - * singular vectors in columns. Columns are inner arrays - * i.e. V(i)(j) is standard math notation V_{ij} - */ -case class TallSkinnyMatrixSVD(val U: TallSkinnyDenseMatrix, - val S: Array[Double], - val V: Array[Array[Double]]) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala index 2cea58cd3fd22..99a849f1c66b1 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala @@ -64,11 +64,13 @@ trait Vector extends Serializable { /** * Factory methods for [[org.apache.spark.mllib.linalg.Vector]]. + * We don't use the name `Vector` because Scala imports + * [[scala.collection.immutable.Vector]] by default. */ object Vectors { /** - * Creates a dense vector. + * Creates a dense vector from its values. */ @varargs def dense(firstValue: Double, otherValues: Double*): Vector = @@ -158,20 +160,21 @@ class DenseVector(val values: Array[Double]) extends Vector { /** * A sparse vector represented by an index array and an value array. * - * @param n size of the vector. + * @param size size of the vector. * @param indices index array, assume to be strictly increasing. * @param values value array, must have the same length as the index array. */ -class SparseVector(val n: Int, val indices: Array[Int], val values: Array[Double]) extends Vector { - - override def size: Int = n +class SparseVector( + override val size: Int, + val indices: Array[Int], + val values: Array[Double]) extends Vector { override def toString: String = { - "(" + n + "," + indices.zip(values).mkString("[", "," ,"]") + ")" + "(" + size + "," + indices.zip(values).mkString("[", "," ,"]") + ")" } override def toArray: Array[Double] = { - val data = new Array[Double](n) + val data = new Array[Double](size) var i = 0 val nnz = indices.length while (i < nnz) { @@ -181,5 +184,5 @@ class SparseVector(val n: Int, val indices: Array[Int], val values: Array[Double data } - private[mllib] override def toBreeze: BV[Double] = new BSV[Double](indices, values, n) + private[mllib] override def toBreeze: BV[Double] = new BSV[Double](indices, values, size) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala new file mode 100644 index 0000000000000..89d5c03d76c42 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala @@ -0,0 +1,116 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import breeze.linalg.{DenseMatrix => BDM} + +import org.apache.spark.annotation.Experimental +import org.apache.spark.rdd.RDD +import org.apache.spark.SparkContext._ +import org.apache.spark.mllib.linalg.Vectors + +/** + * Represents an entry in an distributed matrix. + * @param i row index + * @param j column index + * @param value value of the entry + */ +case class MatrixEntry(i: Long, j: Long, value: Double) + +/** + * :: Experimental :: + * + * Represents a matrix in coordinate format. + * + * @param entries matrix entries + * @param nRows number of rows. A non-positive value means unknown, and then the number of rows will + * be determined by the max row index plus one. + * @param nCols number of columns. A non-positive value means unknown, and then the number of + * columns will be determined by the max column index plus one. + */ +@Experimental +class CoordinateMatrix( + val entries: RDD[MatrixEntry], + private var nRows: Long, + private var nCols: Long) extends DistributedMatrix { + + /** Alternative constructor leaving matrix dimensions to be determined automatically. */ + def this(entries: RDD[MatrixEntry]) = this(entries, 0L, 0L) + + /** Gets or computes the number of columns. */ + override def numCols(): Long = { + if (nCols <= 0L) { + computeSize() + } + nCols + } + + /** Gets or computes the number of rows. */ + override def numRows(): Long = { + if (nRows <= 0L) { + computeSize() + } + nRows + } + + /** Converts to IndexedRowMatrix. The number of columns must be within the integer range. */ + def toIndexedRowMatrix(): IndexedRowMatrix = { + val nl = numCols() + if (nl > Int.MaxValue) { + sys.error(s"Cannot convert to a row-oriented format because the number of columns $nl is " + + "too large.") + } + val n = nl.toInt + val indexedRows = entries.map(entry => (entry.i, (entry.j.toInt, entry.value))) + .groupByKey() + .map { case (i, vectorEntries) => + IndexedRow(i, Vectors.sparse(n, vectorEntries.toSeq)) + } + new IndexedRowMatrix(indexedRows, numRows(), n) + } + + /** + * Converts to RowMatrix, dropping row indices after grouping by row index. + * The number of columns must be within the integer range. + */ + def toRowMatrix(): RowMatrix = { + toIndexedRowMatrix().toRowMatrix() + } + + /** Determines the size by computing the max row/column index. */ + private def computeSize() { + // Reduce will throw an exception if `entries` is empty. + val (m1, n1) = entries.map(entry => (entry.i, entry.j)).reduce { case ((i1, j1), (i2, j2)) => + (math.max(i1, i2), math.max(j1, j2)) + } + // There may be empty columns at the very right and empty rows at the very bottom. + nRows = math.max(nRows, m1 + 1L) + nCols = math.max(nCols, n1 + 1L) + } + + /** Collects data and assembles a local matrix. */ + private[mllib] override def toBreeze(): BDM[Double] = { + val m = numRows().toInt + val n = numCols().toInt + val mat = BDM.zeros[Double](m, n) + entries.collect().foreach { case MatrixEntry(i, j, value) => + mat(i.toInt, j.toInt) = value + } + mat + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala new file mode 100644 index 0000000000000..a0e26ce3bc465 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala @@ -0,0 +1,35 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import breeze.linalg.{DenseMatrix => BDM} + +/** + * Represents a distributively stored matrix backed by one or more RDDs. + */ +trait DistributedMatrix extends Serializable { + + /** Gets or computes the number of rows. */ + def numRows(): Long + + /** Gets or computes the number of columns. */ + def numCols(): Long + + /** Collects data and assembles a local dense breeze matrix (for test only). */ + private[mllib] def toBreeze(): BDM[Double] +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala new file mode 100644 index 0000000000000..24c123ab7eb51 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala @@ -0,0 +1,157 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import breeze.linalg.{DenseMatrix => BDM} + +import org.apache.spark.annotation.Experimental +import org.apache.spark.rdd.RDD +import org.apache.spark.mllib.linalg._ +import org.apache.spark.mllib.linalg.SingularValueDecomposition + +/** + * :: Experimental :: + * + * Represents a row of [[org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix]]. + */ +@Experimental +case class IndexedRow(index: Long, vector: Vector) + +/** + * :: Experimental :: + * + * Represents a row-oriented [[org.apache.spark.mllib.linalg.distributed.DistributedMatrix]] with + * indexed rows. + * + * @param rows indexed rows of this matrix + * @param nRows number of rows. A non-positive value means unknown, and then the number of rows will + * be determined by the max row index plus one. + * @param nCols number of columns. A non-positive value means unknown, and then the number of + * columns will be determined by the size of the first row. + */ +@Experimental +class IndexedRowMatrix( + val rows: RDD[IndexedRow], + private var nRows: Long, + private var nCols: Int) extends DistributedMatrix { + + /** Alternative constructor leaving matrix dimensions to be determined automatically. */ + def this(rows: RDD[IndexedRow]) = this(rows, 0L, 0) + + override def numCols(): Long = { + if (nCols <= 0) { + // Calling `first` will throw an exception if `rows` is empty. + nCols = rows.first().vector.size + } + nCols + } + + override def numRows(): Long = { + if (nRows <= 0L) { + // Reduce will throw an exception if `rows` is empty. + nRows = rows.map(_.index).reduce(math.max) + 1L + } + nRows + } + + /** + * Drops row indices and converts this matrix to a + * [[org.apache.spark.mllib.linalg.distributed.RowMatrix]]. + */ + def toRowMatrix(): RowMatrix = { + new RowMatrix(rows.map(_.vector), 0L, nCols) + } + + /** + * Computes the singular value decomposition of this matrix. + * Denote this matrix by A (m x n), this will compute matrices U, S, V such that A = U * S * V'. + * + * There is no restriction on m, but we require `n^2` doubles to fit in memory. + * Further, n should be less than m. + + * The decomposition is computed by first computing A'A = V S^2 V', + * computing svd locally on that (since n x n is small), from which we recover S and V. + * Then we compute U via easy matrix multiplication as U = A * (V * S^-1). + * Note that this approach requires `O(n^3)` time on the master node. + * + * At most k largest non-zero singular values and associated vectors are returned. + * If there are k such values, then the dimensions of the return will be: + * + * U is an [[org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix]] of size m x k that + * satisfies U'U = eye(k), + * s is a Vector of size k, holding the singular values in descending order, + * and V is a local Matrix of size n x k that satisfies V'V = eye(k). + * + * @param k number of singular values to keep. We might return less than k if there are + * numerically zero singular values. See rCond. + * @param computeU whether to compute U + * @param rCond the reciprocal condition number. All singular values smaller than rCond * sigma(0) + * are treated as zero, where sigma(0) is the largest singular value. + * @return SingularValueDecomposition(U, s, V) + */ + def computeSVD( + k: Int, + computeU: Boolean = false, + rCond: Double = 1e-9): SingularValueDecomposition[IndexedRowMatrix, Matrix] = { + val indices = rows.map(_.index) + val svd = toRowMatrix().computeSVD(k, computeU, rCond) + val U = if (computeU) { + val indexedRows = indices.zip(svd.U.rows).map { case (i, v) => + IndexedRow(i, v) + } + new IndexedRowMatrix(indexedRows, nRows, nCols) + } else { + null + } + SingularValueDecomposition(U, svd.s, svd.V) + } + + /** + * Multiply this matrix by a local matrix on the right. + * + * @param B a local matrix whose number of rows must match the number of columns of this matrix + * @return an IndexedRowMatrix representing the product, which preserves partitioning + */ + def multiply(B: Matrix): IndexedRowMatrix = { + val mat = toRowMatrix().multiply(B) + val indexedRows = rows.map(_.index).zip(mat.rows).map { case (i, v) => + IndexedRow(i, v) + } + new IndexedRowMatrix(indexedRows, nRows, nCols) + } + + /** + * Computes the Gramian matrix `A^T A`. + */ + def computeGramianMatrix(): Matrix = { + toRowMatrix().computeGramianMatrix() + } + + private[mllib] override def toBreeze(): BDM[Double] = { + val m = numRows().toInt + val n = numCols().toInt + val mat = BDM.zeros[Double](m, n) + rows.collect().foreach { case IndexedRow(rowIndex, vector) => + val i = rowIndex.toInt + vector.toBreeze.activeIterator.foreach { case (j, v) => + mat(i, j) = v + } + } + mat + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala new file mode 100644 index 0000000000000..8d32c1a6dbba1 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala @@ -0,0 +1,348 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import java.util + +import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV, svd => brzSvd} +import breeze.numerics.{sqrt => brzSqrt} +import com.github.fommil.netlib.BLAS.{getInstance => blas} + +import org.apache.spark.annotation.Experimental +import org.apache.spark.mllib.linalg._ +import org.apache.spark.rdd.RDD +import org.apache.spark.Logging + +/** + * :: Experimental :: + * + * Represents a row-oriented distributed Matrix with no meaningful row indices. + * + * @param rows rows stored as an RDD[Vector] + * @param nRows number of rows. A non-positive value means unknown, and then the number of rows will + * be determined by the number of records in the RDD `rows`. + * @param nCols number of columns. A non-positive value means unknown, and then the number of + * columns will be determined by the size of the first row. + */ +@Experimental +class RowMatrix( + val rows: RDD[Vector], + private var nRows: Long, + private var nCols: Int) extends DistributedMatrix with Logging { + + /** Alternative constructor leaving matrix dimensions to be determined automatically. */ + def this(rows: RDD[Vector]) = this(rows, 0L, 0) + + /** Gets or computes the number of columns. */ + override def numCols(): Long = { + if (nCols <= 0) { + // Calling `first` will throw an exception if `rows` is empty. + nCols = rows.first().size + } + nCols + } + + /** Gets or computes the number of rows. */ + override def numRows(): Long = { + if (nRows <= 0L) { + nRows = rows.count() + if (nRows == 0L) { + sys.error("Cannot determine the number of rows because it is not specified in the " + + "constructor and the rows RDD is empty.") + } + } + nRows + } + + /** + * Computes the Gramian matrix `A^T A`. + */ + def computeGramianMatrix(): Matrix = { + val n = numCols().toInt + val nt: Int = n * (n + 1) / 2 + + // Compute the upper triangular part of the gram matrix. + val GU = rows.aggregate(new BDV[Double](new Array[Double](nt)))( + seqOp = (U, v) => { + RowMatrix.dspr(1.0, v, U.data) + U + }, + combOp = (U1, U2) => U1 += U2 + ) + + RowMatrix.triuToFull(n, GU.data) + } + + /** + * Computes the singular value decomposition of this matrix. + * Denote this matrix by A (m x n), this will compute matrices U, S, V such that A = U * S * V'. + * + * There is no restriction on m, but we require `n^2` doubles to fit in memory. + * Further, n should be less than m. + + * The decomposition is computed by first computing A'A = V S^2 V', + * computing svd locally on that (since n x n is small), from which we recover S and V. + * Then we compute U via easy matrix multiplication as U = A * (V * S^-1). + * Note that this approach requires `O(n^3)` time on the master node. + * + * At most k largest non-zero singular values and associated vectors are returned. + * If there are k such values, then the dimensions of the return will be: + * + * U is a RowMatrix of size m x k that satisfies U'U = eye(k), + * s is a Vector of size k, holding the singular values in descending order, + * and V is a Matrix of size n x k that satisfies V'V = eye(k). + * + * @param k number of singular values to keep. We might return less than k if there are + * numerically zero singular values. See rCond. + * @param computeU whether to compute U + * @param rCond the reciprocal condition number. All singular values smaller than rCond * sigma(0) + * are treated as zero, where sigma(0) is the largest singular value. + * @return SingularValueDecomposition(U, s, V) + */ + def computeSVD( + k: Int, + computeU: Boolean = false, + rCond: Double = 1e-9): SingularValueDecomposition[RowMatrix, Matrix] = { + val n = numCols().toInt + require(k > 0 && k <= n, s"Request up to n singular values k=$k n=$n.") + + val G = computeGramianMatrix() + + // TODO: Use sparse SVD instead. + val (u: BDM[Double], sigmaSquares: BDV[Double], v: BDM[Double]) = + brzSvd(G.toBreeze.asInstanceOf[BDM[Double]]) + val sigmas: BDV[Double] = brzSqrt(sigmaSquares) + + // Determine effective rank. + val sigma0 = sigmas(0) + val threshold = rCond * sigma0 + var i = 0 + while (i < k && sigmas(i) >= threshold) { + i += 1 + } + val sk = i + + if (sk < k) { + logWarning(s"Requested $k singular values but only found $sk nonzeros.") + } + + val s = Vectors.dense(util.Arrays.copyOfRange(sigmas.data, 0, sk)) + val V = Matrices.dense(n, sk, util.Arrays.copyOfRange(u.data, 0, n * sk)) + + if (computeU) { + // N = Vk * Sk^{-1} + val N = new BDM[Double](n, sk, util.Arrays.copyOfRange(u.data, 0, n * sk)) + var i = 0 + var j = 0 + while (j < sk) { + i = 0 + val sigma = sigmas(j) + while (i < n) { + N(i, j) /= sigma + i += 1 + } + j += 1 + } + val U = this.multiply(Matrices.fromBreeze(N)) + SingularValueDecomposition(U, s, V) + } else { + SingularValueDecomposition(null, s, V) + } + } + + /** + * Computes the covariance matrix, treating each row as an observation. + * @return a local dense matrix of size n x n + */ + def computeCovariance(): Matrix = { + val n = numCols().toInt + + if (n > 10000) { + val mem = n * n * java.lang.Double.SIZE / java.lang.Byte.SIZE + logWarning(s"The number of columns $n is greater than 10000! " + + s"We need at least $mem bytes of memory.") + } + + val (m, mean) = rows.aggregate[(Long, BDV[Double])]((0L, BDV.zeros[Double](n)))( + seqOp = (s: (Long, BDV[Double]), v: Vector) => (s._1 + 1L, s._2 += v.toBreeze), + combOp = (s1: (Long, BDV[Double]), s2: (Long, BDV[Double])) => (s1._1 + s2._1, s1._2 += s2._2) + ) + + // Update _m if it is not set, or verify its value. + if (nRows <= 0L) { + nRows = m + } else { + require(nRows == m, + s"The number of rows $m is different from what specified or previously computed: ${nRows}.") + } + + mean :/= m.toDouble + + // We use the formula Cov(X, Y) = E[X * Y] - E[X] E[Y], which is not accurate if E[X * Y] is + // large but Cov(X, Y) is small, but it is good for sparse computation. + // TODO: find a fast and stable way for sparse data. + + val G = computeGramianMatrix().toBreeze.asInstanceOf[BDM[Double]] + + var i = 0 + var j = 0 + val m1 = m - 1.0 + var alpha = 0.0 + while (i < n) { + alpha = m / m1 * mean(i) + j = 0 + while (j < n) { + G(i, j) = G(i, j) / m1 - alpha * mean(j) + j += 1 + } + i += 1 + } + + Matrices.fromBreeze(G) + } + + /** + * Computes the top k principal components. + * Rows correspond to observations and columns correspond to variables. + * The principal components are stored a local matrix of size n-by-k. + * Each column corresponds for one principal component, + * and the columns are in descending order of component variance. + * + * @param k number of top principal components. + * @return a matrix of size n-by-k, whose columns are principal components + */ + def computePrincipalComponents(k: Int): Matrix = { + val n = numCols().toInt + require(k > 0 && k <= n, s"k = $k out of range (0, n = $n]") + + val Cov = computeCovariance().toBreeze.asInstanceOf[BDM[Double]] + + val (u: BDM[Double], _, _) = brzSvd(Cov) + + if (k == n) { + Matrices.dense(n, k, u.data) + } else { + Matrices.dense(n, k, util.Arrays.copyOfRange(u.data, 0, n * k)) + } + } + + /** + * Multiply this matrix by a local matrix on the right. + * + * @param B a local matrix whose number of rows must match the number of columns of this matrix + * @return a [[org.apache.spark.mllib.linalg.distributed.RowMatrix]] representing the product, + * which preserves partitioning + */ + def multiply(B: Matrix): RowMatrix = { + val n = numCols().toInt + require(n == B.numRows, s"Dimension mismatch: $n vs ${B.numRows}") + + require(B.isInstanceOf[DenseMatrix], + s"Only support dense matrix at this time but found ${B.getClass.getName}.") + + val Bb = rows.context.broadcast(B) + val AB = rows.mapPartitions({ iter => + val Bi = Bb.value.toBreeze.asInstanceOf[BDM[Double]] + iter.map(v => Vectors.fromBreeze(Bi.t * v.toBreeze)) + }, preservesPartitioning = true) + + new RowMatrix(AB, nRows, B.numCols) + } + + private[mllib] override def toBreeze(): BDM[Double] = { + val m = numRows().toInt + val n = numCols().toInt + val mat = BDM.zeros[Double](m, n) + var i = 0 + rows.collect().foreach { v => + v.toBreeze.activeIterator.foreach { case (j, v) => + mat(i, j) = v + } + i += 1 + } + mat + } +} + +object RowMatrix { + + /** + * Adds alpha * x * x.t to a matrix in-place. This is the same as BLAS's DSPR. + * + * @param U the upper triangular part of the matrix packed in an array (column major) + */ + private def dspr(alpha: Double, v: Vector, U: Array[Double]): Unit = { + // TODO: Find a better home (breeze?) for this method. + val n = v.size + v match { + case dv: DenseVector => + blas.dspr("U", n, 1.0, dv.values, 1, U) + case sv: SparseVector => + val indices = sv.indices + val values = sv.values + val nnz = indices.length + var colStartIdx = 0 + var prevCol = 0 + var col = 0 + var j = 0 + var i = 0 + var av = 0.0 + while (j < nnz) { + col = indices(j) + // Skip empty columns. + colStartIdx += (col - prevCol) * (col + prevCol + 1) / 2 + col = indices(j) + av = alpha * values(j) + i = 0 + while (i <= j) { + U(colStartIdx + indices(i)) += av * values(i) + i += 1 + } + j += 1 + prevCol = col + } + } + } + + /** + * Fills a full square matrix from its upper triangular part. + */ + private def triuToFull(n: Int, U: Array[Double]): Matrix = { + val G = new BDM[Double](n, n) + + var row = 0 + var col = 0 + var idx = 0 + var value = 0.0 + while (col < n) { + row = 0 + while (row < col) { + value = U(idx) + G(row, col) = value + G(col, row) = value + idx += 1 + row += 1 + } + G(col, col) = U(idx) + idx += 1 + col +=1 + } + + Matrices.dense(n, n, G.data) + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala index 20654284965ed..1176dc9dbc08d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala @@ -19,11 +19,15 @@ package org.apache.spark.mllib.optimization import breeze.linalg.{axpy => brzAxpy} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.mllib.linalg.{Vectors, Vector} /** + * :: DeveloperApi :: + * * Class used to compute the gradient for a loss function, given a single data point. */ +@DeveloperApi abstract class Gradient extends Serializable { /** * Compute the gradient and loss given the features of a single data point. @@ -51,9 +55,12 @@ abstract class Gradient extends Serializable { } /** + * :: DeveloperApi :: + * * Compute gradient and loss for a logistic loss function, as used in binary classification. * See also the documentation for the precise formulation. */ +@DeveloperApi class LogisticGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val brzData = data.toBreeze @@ -92,11 +99,14 @@ class LogisticGradient extends Gradient { } /** + * :: DeveloperApi :: + * * Compute gradient and loss for a Least-squared loss function, as used in linear regression. * This is correct for the averaged least squares loss function (mean squared error) * L = 1/n ||A weights-y||^2 * See also the documentation for the precise formulation. */ +@DeveloperApi class LeastSquaresGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val brzData = data.toBreeze @@ -124,10 +134,13 @@ class LeastSquaresGradient extends Gradient { } /** + * :: DeveloperApi :: + * * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification. * See also the documentation for the precise formulation. * NOTE: This assumes that the labels are {0,1} */ +@DeveloperApi class HingeGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val brzData = data.toBreeze diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala index d0777ffd63ff8..04267d967dcad 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala @@ -19,18 +19,22 @@ package org.apache.spark.mllib.optimization import scala.collection.mutable.ArrayBuffer -import breeze.linalg.{Vector => BV, DenseVector => BDV} +import breeze.linalg.{DenseVector => BDV} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.Logging import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.{Vectors, Vector} /** + * :: DeveloperApi :: + * * Class used to solve an optimization problem using Gradient Descent. * @param gradient Gradient function to be used. * @param updater Updater to be used to update weights after every iteration. */ -class GradientDescent(var gradient: Gradient, var updater: Updater) +@DeveloperApi +class GradientDescent(private var gradient: Gradient, private var updater: Updater) extends Optimizer with Logging { private var stepSize: Double = 1.0 @@ -107,7 +111,12 @@ class GradientDescent(var gradient: Gradient, var updater: Updater) } -// Top-level method to run gradient descent. +/** + * :: DeveloperApi :: + * + * Top-level method to run gradient descent. + */ +@DeveloperApi object GradientDescent extends Logging { /** * Run stochastic gradient descent (SGD) in parallel using mini batches. diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Optimizer.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Optimizer.scala index f9ce908a5f3b0..0a313f3104b14 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Optimizer.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Optimizer.scala @@ -19,8 +19,15 @@ package org.apache.spark.mllib.optimization import org.apache.spark.rdd.RDD +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.mllib.linalg.Vector +/** + * :: DeveloperApi :: + * + * Trait for optimization problem solvers. + */ +@DeveloperApi trait Optimizer extends Serializable { /** diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Updater.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Updater.scala index 3b7754cd7ac28..e67816796c6b1 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Updater.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Updater.scala @@ -21,9 +21,12 @@ import scala.math._ import breeze.linalg.{norm => brzNorm, axpy => brzAxpy, Vector => BV} +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.mllib.linalg.{Vectors, Vector} /** + * :: DeveloperApi :: + * * Class used to perform steps (weight update) using Gradient Descent methods. * * For general minimization problems, or for regularized problems of the form @@ -35,6 +38,7 @@ import org.apache.spark.mllib.linalg.{Vectors, Vector} * The updater is responsible to also perform the update coming from the * regularization term R(w) (if any regularization is used). */ +@DeveloperApi abstract class Updater extends Serializable { /** * Compute an updated value for weights given the gradient, stepSize, iteration number and @@ -59,9 +63,12 @@ abstract class Updater extends Serializable { } /** + * :: DeveloperApi :: + * * A simple updater for gradient descent *without* any regularization. * Uses a step-size decreasing with the square root of the number of iterations. */ +@DeveloperApi class SimpleUpdater extends Updater { override def compute( weightsOld: Vector, @@ -78,6 +85,8 @@ class SimpleUpdater extends Updater { } /** + * :: DeveloperApi :: + * * Updater for L1 regularized problems. * R(w) = ||w||_1 * Uses a step-size decreasing with the square root of the number of iterations. @@ -95,6 +104,7 @@ class SimpleUpdater extends Updater { * * Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal) */ +@DeveloperApi class L1Updater extends Updater { override def compute( weightsOld: Vector, @@ -120,10 +130,13 @@ class L1Updater extends Updater { } /** + * :: DeveloperApi :: + * * Updater for L2 regularized problems. * R(w) = 1/2 ||w||^2 * Uses a step-size decreasing with the square root of the number of iterations. */ +@DeveloperApi class SquaredL2Updater extends Updater { override def compute( weightsOld: Vector, diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala index 0cc9f48769f83..60cbb1c1e1d86 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala @@ -22,6 +22,10 @@ import scala.math.{abs, sqrt} import scala.util.Random import scala.util.Sorting +import com.esotericsoftware.kryo.Kryo +import org.jblas.{DoubleMatrix, SimpleBlas, Solve} + +import org.apache.spark.annotation.Experimental import org.apache.spark.broadcast.Broadcast import org.apache.spark.{Logging, HashPartitioner, Partitioner, SparkContext, SparkConf} import org.apache.spark.storage.StorageLevel @@ -29,10 +33,6 @@ import org.apache.spark.rdd.RDD import org.apache.spark.serializer.KryoRegistrator import org.apache.spark.SparkContext._ -import com.esotericsoftware.kryo.Kryo -import org.jblas.{DoubleMatrix, SimpleBlas, Solve} - - /** * Out-link information for a user or product block. This includes the original user/product IDs * of the elements within this block, and the list of destination blocks that each user or @@ -90,14 +90,19 @@ case class Rating(val user: Int, val product: Int, val rating: Double) * preferences rather than explicit ratings given to items. */ class ALS private ( - var numBlocks: Int, - var rank: Int, - var iterations: Int, - var lambda: Double, - var implicitPrefs: Boolean, - var alpha: Double, - var seed: Long = System.nanoTime() + private var numBlocks: Int, + private var rank: Int, + private var iterations: Int, + private var lambda: Double, + private var implicitPrefs: Boolean, + private var alpha: Double, + private var seed: Long = System.nanoTime() ) extends Serializable with Logging { + + /** + * Constructs an ALS instance with default parameters: {numBlocks: -1, rank: 10, iterations: 10, + * lambda: 0.01, implicitPrefs: false, alpha: 1.0}. + */ def this() = this(-1, 10, 10, 0.01, false, 1.0) /** @@ -127,11 +132,18 @@ class ALS private ( this } + /** Sets whether to use implicit preference. Default: false. */ def setImplicitPrefs(implicitPrefs: Boolean): ALS = { this.implicitPrefs = implicitPrefs this } + /** + * :: Experimental :: + * + * Sets the constant used in computing confidence in implicit ALS. Default: 1.0. + */ + @Experimental def setAlpha(alpha: Double): ALS = { this.alpha = alpha this @@ -421,12 +433,12 @@ class ALS private ( * Compute the new feature vectors for a block of the users matrix given the list of factors * it received from each product and its InLinkBlock. */ - private def updateBlock(messages: Seq[(Int, Array[Array[Double]])], inLinkBlock: InLinkBlock, + private def updateBlock(messages: Iterable[(Int, Array[Array[Double]])], inLinkBlock: InLinkBlock, rank: Int, lambda: Double, alpha: Double, YtY: Option[Broadcast[DoubleMatrix]]) : Array[Array[Double]] = { // Sort the incoming block factor messages by block ID and make them an array - val blockFactors = messages.sortBy(_._1).map(_._2).toArray // Array[Array[Double]] + val blockFactors = messages.toSeq.sortBy(_._1).map(_._2).toArray // Array[Array[Double]] val numBlocks = blockFactors.length val numUsers = inLinkBlock.elementIds.length diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala index 443fc5de5bf04..e05224fc7caf2 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala @@ -17,13 +17,14 @@ package org.apache.spark.mllib.recommendation +import org.jblas._ + +import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.api.java.JavaRDD import org.apache.spark.rdd.RDD import org.apache.spark.SparkContext._ import org.apache.spark.mllib.api.python.PythonMLLibAPI -import org.jblas._ -import org.apache.spark.api.java.JavaRDD - /** * Model representing the result of matrix factorization. @@ -68,6 +69,8 @@ class MatrixFactorizationModel( } /** + * :: DeveloperApi :: + * * Predict the rating of many users for many products. * This is a Java stub for python predictAll() * diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala index 80dc0f12ff84f..c24f5afb99686 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala @@ -19,6 +19,7 @@ package org.apache.spark.mllib.regression import breeze.linalg.{DenseVector => BDV, SparseVector => BSV} +import org.apache.spark.annotation.Experimental import org.apache.spark.{Logging, SparkException} import org.apache.spark.rdd.RDD import org.apache.spark.mllib.optimization._ @@ -79,7 +80,8 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] protected val validators: Seq[RDD[LabeledPoint] => Boolean] = List() - val optimizer: Optimizer + /** The optimizer to solve the problem. */ + def optimizer: Optimizer /** Whether to add intercept (default: true). */ protected var addIntercept: Boolean = true @@ -100,8 +102,11 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] } /** + * :: Experimental :: + * * Set if the algorithm should validate data before training. Default true. */ + @Experimental def setValidateData(validateData: Boolean): this.type = { this.validateData = validateData this diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/Lasso.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/Lasso.scala index 25920d0dc976e..5f0812fd2e0eb 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/Lasso.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/Lasso.scala @@ -52,15 +52,16 @@ class LassoModel( * See also the documentation for the precise formulation. */ class LassoWithSGD private ( - var stepSize: Double, - var numIterations: Int, - var regParam: Double, - var miniBatchFraction: Double) + private var stepSize: Double, + private var numIterations: Int, + private var regParam: Double, + private var miniBatchFraction: Double) extends GeneralizedLinearAlgorithm[LassoModel] with Serializable { - val gradient = new LeastSquaresGradient() - val updater = new L1Updater() - @transient val optimizer = new GradientDescent(gradient, updater).setStepSize(stepSize) + private val gradient = new LeastSquaresGradient() + private val updater = new L1Updater() + override val optimizer = new GradientDescent(gradient, updater) + .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) @@ -69,7 +70,8 @@ class LassoWithSGD private ( super.setIntercept(false) /** - * Construct a Lasso object with default parameters + * Construct a Lasso object with default parameters: {stepSize: 1.0, numIterations: 100, + * regParam: 1.0, miniBatchFraction: 1.0}. */ def this() = this(1.0, 100, 1.0, 1.0) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/LinearRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/LinearRegression.scala index 9ed927994e795..228fa8db3e721 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/LinearRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/LinearRegression.scala @@ -52,19 +52,21 @@ class LinearRegressionModel( * See also the documentation for the precise formulation. */ class LinearRegressionWithSGD private ( - var stepSize: Double, - var numIterations: Int, - var miniBatchFraction: Double) + private var stepSize: Double, + private var numIterations: Int, + private var miniBatchFraction: Double) extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable { - val gradient = new LeastSquaresGradient() - val updater = new SimpleUpdater() - val optimizer = new GradientDescent(gradient, updater).setStepSize(stepSize) + private val gradient = new LeastSquaresGradient() + private val updater = new SimpleUpdater() + override val optimizer = new GradientDescent(gradient, updater) + .setStepSize(stepSize) .setNumIterations(numIterations) .setMiniBatchFraction(miniBatchFraction) /** - * Construct a LinearRegression object with default parameters + * Construct a LinearRegression object with default parameters: {stepSize: 1.0, + * numIterations: 100, miniBatchFraction: 1.0}. */ def this() = this(1.0, 100, 1.0) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/RidgeRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/RidgeRegression.scala index 1f17d2107f940..e702027c7c170 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/RidgeRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/RidgeRegression.scala @@ -52,16 +52,17 @@ class RidgeRegressionModel( * See also the documentation for the precise formulation. */ class RidgeRegressionWithSGD private ( - var stepSize: Double, - var numIterations: Int, - var regParam: Double, - var miniBatchFraction: Double) - extends GeneralizedLinearAlgorithm[RidgeRegressionModel] with Serializable { + private var stepSize: Double, + private var numIterations: Int, + private var regParam: Double, + private var miniBatchFraction: Double) + extends GeneralizedLinearAlgorithm[RidgeRegressionModel] with Serializable { - val gradient = new LeastSquaresGradient() - val updater = new SquaredL2Updater() + private val gradient = new LeastSquaresGradient() + private val updater = new SquaredL2Updater() - @transient val optimizer = new GradientDescent(gradient, updater).setStepSize(stepSize) + override val optimizer = new GradientDescent(gradient, updater) + .setStepSize(stepSize) .setNumIterations(numIterations) .setRegParam(regParam) .setMiniBatchFraction(miniBatchFraction) @@ -70,7 +71,8 @@ class RidgeRegressionWithSGD private ( super.setIntercept(false) /** - * Construct a RidgeRegression object with default parameters + * Construct a RidgeRegression object with default parameters: {stepSize: 1.0, numIterations: 100, + * regParam: 1.0, miniBatchFraction: 1.0}. */ def this() = this(1.0, 100, 1.0, 1.0) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala index dee9594a9dd79..c8a966cd5f5a8 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala @@ -19,6 +19,7 @@ package org.apache.spark.mllib.tree import scala.util.control.Breaks._ +import org.apache.spark.annotation.Experimental import org.apache.spark.{Logging, SparkContext} import org.apache.spark.SparkContext._ import org.apache.spark.mllib.regression.LabeledPoint @@ -33,13 +34,16 @@ import org.apache.spark.util.random.XORShiftRandom import org.apache.spark.mllib.linalg.{Vector, Vectors} /** + * :: Experimental :: + * * A class that implements a decision tree algorithm for classification and regression. It * supports both continuous and categorical features. * @param strategy The configuration parameters for the tree algorithm which specify the type * of algorithm (classification, regression, etc.), feature type (continuous, * categorical), depth of the tree, quantile calculation strategy, etc. */ -class DecisionTree private(val strategy: Strategy) extends Serializable with Logging { +@Experimental +class DecisionTree (private val strategy: Strategy) extends Serializable with Logging { /** * Method to train a decision tree model over an RDD @@ -1024,7 +1028,7 @@ object DecisionTree extends Serializable with Logging { } } - val usage = """ + private val usage = """ Usage: DecisionTreeRunner [slices] --algo --trainDataDir path --testDataDir path --maxDepth num [--impurity ] [--maxBins num] @@ -1113,7 +1117,7 @@ object DecisionTree extends Serializable with Logging { * @return An RDD of LabeledPoint. Each labeled point has two elements: the first element is * the label, and the second element represents the feature values (an array of Double). */ - def loadLabeledData(sc: SparkContext, dir: String): RDD[LabeledPoint] = { + private def loadLabeledData(sc: SparkContext, dir: String): RDD[LabeledPoint] = { sc.textFile(dir).map { line => val parts = line.trim().split(",") val label = parts(0).toDouble diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Algo.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Algo.scala index 2dd1f0f27b8f5..017f84f3b9e8b 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Algo.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Algo.scala @@ -17,9 +17,14 @@ package org.apache.spark.mllib.tree.configuration +import org.apache.spark.annotation.Experimental + /** + * :: Experimental :: + * * Enum to select the algorithm for the decision tree */ +@Experimental object Algo extends Enumeration { type Algo = Value val Classification, Regression = Value diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/FeatureType.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/FeatureType.scala index 09ee0586c58fa..c0254c32c2dce 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/FeatureType.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/FeatureType.scala @@ -17,9 +17,14 @@ package org.apache.spark.mllib.tree.configuration +import org.apache.spark.annotation.Experimental + /** + * :: Experimental :: + * * Enum to describe whether a feature is "continuous" or "categorical" */ +@Experimental object FeatureType extends Enumeration { type FeatureType = Value val Continuous, Categorical = Value diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/QuantileStrategy.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/QuantileStrategy.scala index 2457a480c2a14..b3e8b224beeaa 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/QuantileStrategy.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/QuantileStrategy.scala @@ -17,9 +17,14 @@ package org.apache.spark.mllib.tree.configuration +import org.apache.spark.annotation.Experimental + /** + * :: Experimental :: + * * Enum for selecting the quantile calculation strategy */ +@Experimental object QuantileStrategy extends Enumeration { type QuantileStrategy = Value val Sort, MinMax, ApproxHist = Value diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala index df565f3eb8859..482faaa9e7256 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala @@ -17,11 +17,14 @@ package org.apache.spark.mllib.tree.configuration +import org.apache.spark.annotation.Experimental import org.apache.spark.mllib.tree.impurity.Impurity import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.mllib.tree.configuration.QuantileStrategy._ /** + * :: Experimental :: + * * Stores all the configuration options for tree construction * @param algo classification or regression * @param impurity criterion used for information gain calculation @@ -34,10 +37,11 @@ import org.apache.spark.mllib.tree.configuration.QuantileStrategy._ * 1, 2, ... , k-1. It's important to note that features are * zero-indexed. */ +@Experimental class Strategy ( val algo: Algo, val impurity: Impurity, val maxDepth: Int, val maxBins: Int = 100, val quantileCalculationStrategy: QuantileStrategy = Sort, - val categoricalFeaturesInfo: Map[Int,Int] = Map[Int,Int]()) extends Serializable + val categoricalFeaturesInfo: Map[Int, Int] = Map[Int, Int]()) extends Serializable diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Entropy.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Entropy.scala index b93995fcf9441..55c43f2fcf9c5 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Entropy.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Entropy.scala @@ -17,31 +17,39 @@ package org.apache.spark.mllib.tree.impurity +import org.apache.spark.annotation.{DeveloperApi, Experimental} + /** + * :: Experimental :: + * * Class for calculating [[http://en.wikipedia.org/wiki/Binary_entropy_function entropy]] during * binary classification. */ +@Experimental object Entropy extends Impurity { - def log2(x: Double) = scala.math.log(x) / scala.math.log(2) + private[tree] def log2(x: Double) = scala.math.log(x) / scala.math.log(2) /** + * :: DeveloperApi :: + * * entropy calculation * @param c0 count of instances with label 0 * @param c1 count of instances with label 1 * @return entropy value */ - def calculate(c0: Double, c1: Double): Double = { - if (c0 == 0 || c1 == 0) { - 0 - } else { - val total = c0 + c1 - val f0 = c0 / total - val f1 = c1 / total - -(f0 * log2(f0)) - (f1 * log2(f1)) - } - } + @DeveloperApi + override def calculate(c0: Double, c1: Double): Double = { + if (c0 == 0 || c1 == 0) { + 0 + } else { + val total = c0 + c1 + val f0 = c0 / total + val f1 = c1 / total + -(f0 * log2(f0)) - (f1 * log2(f1)) + } + } - def calculate(count: Double, sum: Double, sumSquares: Double): Double = + override def calculate(count: Double, sum: Double, sumSquares: Double): Double = throw new UnsupportedOperationException("Entropy.calculate") } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Gini.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Gini.scala index c0407554a91b3..c923b8e8f4cf1 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Gini.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Gini.scala @@ -17,19 +17,27 @@ package org.apache.spark.mllib.tree.impurity +import org.apache.spark.annotation.{DeveloperApi, Experimental} + /** + * :: Experimental :: + * * Class for calculating the * [[http://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity Gini impurity]] * during binary classification. */ +@Experimental object Gini extends Impurity { /** + * :: DeveloperApi :: + * * Gini coefficient calculation * @param c0 count of instances with label 0 * @param c1 count of instances with label 1 * @return Gini coefficient value */ + @DeveloperApi override def calculate(c0: Double, c1: Double): Double = { if (c0 == 0 || c1 == 0) { 0 @@ -41,6 +49,6 @@ object Gini extends Impurity { } } - def calculate(count: Double, sum: Double, sumSquares: Double): Double = + override def calculate(count: Double, sum: Double, sumSquares: Double): Double = throw new UnsupportedOperationException("Gini.calculate") } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Impurity.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Impurity.scala index a4069063af2ad..f407796596c6c 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Impurity.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Impurity.scala @@ -17,26 +17,36 @@ package org.apache.spark.mllib.tree.impurity +import org.apache.spark.annotation.{DeveloperApi, Experimental} + /** + * :: Experimental :: + * * Trait for calculating information gain. */ +@Experimental trait Impurity extends Serializable { /** + * :: DeveloperApi :: + * * information calculation for binary classification * @param c0 count of instances with label 0 * @param c1 count of instances with label 1 * @return information value */ + @DeveloperApi def calculate(c0 : Double, c1 : Double): Double /** + * :: DeveloperApi :: + * * information calculation for regression * @param count number of instances * @param sum sum of labels * @param sumSquares summation of squares of the labels * @return information value */ + @DeveloperApi def calculate(count: Double, sum: Double, sumSquares: Double): Double - } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Variance.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Variance.scala index b74577dcec167..2c64644f4ed0f 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Variance.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/impurity/Variance.scala @@ -17,19 +17,27 @@ package org.apache.spark.mllib.tree.impurity +import org.apache.spark.annotation.{DeveloperApi, Experimental} + /** + * :: Experimental :: + * * Class for calculating variance during regression */ +@Experimental object Variance extends Impurity { override def calculate(c0: Double, c1: Double): Double = throw new UnsupportedOperationException("Variance.calculate") /** + * :: DeveloperApi :: + * * variance calculation * @param count number of instances * @param sum sum of labels * @param sumSquares summation of squares of the labels */ + @DeveloperApi override def calculate(count: Double, sum: Double, sumSquares: Double): Double = { val squaredLoss = sumSquares - (sum * sum) / count squaredLoss / count diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Bin.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Bin.scala index a57faa13745f7..2d71e1e366069 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Bin.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Bin.scala @@ -30,4 +30,5 @@ import org.apache.spark.mllib.tree.configuration.FeatureType._ * @param featureType type of feature -- categorical or continuous * @param category categorical label value accepted in the bin */ +private[tree] case class Bin(lowSplit: Split, highSplit: Split, featureType: FeatureType, category: Double) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala index a6dca84a2ce09..0f76f4a049057 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/DecisionTreeModel.scala @@ -17,15 +17,19 @@ package org.apache.spark.mllib.tree.model +import org.apache.spark.annotation.Experimental import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.Vector /** + * :: Experimental :: + * * Model to store the decision tree parameters * @param topNode root node * @param algo algorithm type -- classification or regression */ +@Experimental class DecisionTreeModel(val topNode: Node, val algo: Algo) extends Serializable { /** diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Filter.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Filter.scala index ebc9595eafef3..2deaf4ae8dcab 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Filter.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Filter.scala @@ -22,7 +22,7 @@ package org.apache.spark.mllib.tree.model * @param split split specifying the feature index, type and threshold * @param comparison integer specifying <,=,> */ -case class Filter(split: Split, comparison: Int) { +private[tree] case class Filter(split: Split, comparison: Int) { // Comparison -1,0,1 signifies <.=,> override def toString = " split = " + split + "comparison = " + comparison } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/InformationGainStats.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/InformationGainStats.scala index 99bf79cf12e45..d36b58e92ced6 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/InformationGainStats.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/InformationGainStats.scala @@ -17,7 +17,11 @@ package org.apache.spark.mllib.tree.model +import org.apache.spark.annotation.DeveloperApi + /** + * :: DeveloperApi :: + * * Information gain statistics for each split * @param gain information gain value * @param impurity current node impurity @@ -25,6 +29,7 @@ package org.apache.spark.mllib.tree.model * @param rightImpurity right node impurity * @param predict predicted value */ +@DeveloperApi class InformationGainStats( val gain: Double, val impurity: Double, diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Node.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Node.scala index aac3f9ce308f7..339972141498c 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Node.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Node.scala @@ -17,11 +17,14 @@ package org.apache.spark.mllib.tree.model +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.Logging import org.apache.spark.mllib.tree.configuration.FeatureType._ import org.apache.spark.mllib.linalg.Vector /** + * :: DeveloperApi :: + * * Node in a decision tree * @param id integer node id * @param predict predicted value at the node @@ -31,6 +34,7 @@ import org.apache.spark.mllib.linalg.Vector * @param rightNode right child * @param stats information gain stats */ +@DeveloperApi class Node ( val id: Int, val predict: Double, diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala index 4e64a81dda74e..8bbb343079b49 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala @@ -17,20 +17,24 @@ package org.apache.spark.mllib.tree.model +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.mllib.tree.configuration.FeatureType.FeatureType /** + * :: DeveloperApi :: + * * Split applied to a feature * @param feature feature index * @param threshold threshold for continuous feature * @param featureType type of feature -- categorical or continuous * @param categories accepted values for categorical variables */ +@DeveloperApi case class Split( feature: Int, threshold: Double, featureType: FeatureType, - categories: List[Double]){ + categories: List[Double]) { override def toString = "Feature = " + feature + ", threshold = " + threshold + ", featureType = " + featureType + @@ -42,7 +46,7 @@ case class Split( * @param feature feature index * @param featureType type of feature -- categorical or continuous */ -class DummyLowSplit(feature: Int, featureType: FeatureType) +private[tree] class DummyLowSplit(feature: Int, featureType: FeatureType) extends Split(feature, Double.MinValue, featureType, List()) /** @@ -50,7 +54,7 @@ class DummyLowSplit(feature: Int, featureType: FeatureType) * @param feature feature index * @param featureType type of feature -- categorical or continuous */ -class DummyHighSplit(feature: Int, featureType: FeatureType) +private[tree] class DummyHighSplit(feature: Int, featureType: FeatureType) extends Split(feature, Double.MaxValue, featureType, List()) /** @@ -59,6 +63,6 @@ class DummyHighSplit(feature: Int, featureType: FeatureType) * @param feature feature index * @param featureType type of feature -- categorical or continuous */ -class DummyCategoricalSplit(feature: Int, featureType: FeatureType) +private[tree] class DummyCategoricalSplit(feature: Int, featureType: FeatureType) extends Split(feature, Double.MaxValue, featureType, List()) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala index 8b55bce7c4bec..230c409e1be33 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala @@ -17,23 +17,25 @@ package org.apache.spark.mllib.util +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.Logging import org.apache.spark.rdd.RDD import org.apache.spark.mllib.regression.LabeledPoint /** + * :: DeveloperApi :: + * * A collection of methods used to validate data before applying ML algorithms. */ +@DeveloperApi object DataValidators extends Logging { /** * Function to check if labels used for classification are either zero or one. * - * @param data - input data set that needs to be checked - * * @return True if labels are all zero or one, false otherwise. */ - val classificationLabels: RDD[LabeledPoint] => Boolean = { data => + val binaryLabelValidator: RDD[LabeledPoint] => Boolean = { data => val numInvalid = data.filter(x => x.label != 1.0 && x.label != 0.0).count() if (numInvalid != 0) { logError("Classification labels should be 0 or 1. Found " + numInvalid + " invalid labels") diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/KMeansDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/KMeansDataGenerator.scala index 9109189dff52f..e693d13703987 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/KMeansDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/KMeansDataGenerator.scala @@ -19,15 +19,18 @@ package org.apache.spark.mllib.util import scala.util.Random +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD /** + * :: DeveloperApi :: + * * Generate test data for KMeans. This class first chooses k cluster centers * from a d-dimensional Gaussian distribution scaled by factor r and then creates a Gaussian * cluster with scale 1 around each center. */ - +@DeveloperApi object KMeansDataGenerator { /** diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala deleted file mode 100644 index afe081295bfae..0000000000000 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.util - -import org.apache.spark.SparkContext._ - -import org.apache.spark.mllib.linalg._ - -/** - * Helper methods for linear algebra - */ -object LAUtils { - /** - * Convert a SparseMatrix into a TallSkinnyDenseMatrix - * - * @param sp Sparse matrix to be converted - * @return dense version of the input - */ - def sparseToTallSkinnyDense(sp: SparseMatrix): TallSkinnyDenseMatrix = { - val m = sp.m - val n = sp.n - val rows = sp.data.map(x => (x.i, (x.j, x.mval))).groupByKey().map { - case (i, cols) => - val rowArray = Array.ofDim[Double](n) - var j = 0 - while (j < cols.size) { - rowArray(cols(j)._1) = cols(j)._2 - j += 1 - } - MatrixRow(i, rowArray) - } - TallSkinnyDenseMatrix(rows, m, n) - } - - /** - * Convert a TallSkinnyDenseMatrix to a SparseMatrix - * - * @param a matrix to be converted - * @return sparse version of the input - */ - def denseToSparse(a: TallSkinnyDenseMatrix): SparseMatrix = { - val m = a.m - val n = a.n - val data = a.rows.flatMap { - mrow => Array.tabulate(n)(j => MatrixEntry(mrow.i, j, mrow.data(j))) - .filter(x => x.mval != 0) - } - SparseMatrix(data, m, n) - } -} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LabelParsers.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LabelParsers.scala new file mode 100644 index 0000000000000..f7966d3ebb613 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/LabelParsers.scala @@ -0,0 +1,49 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.util + +/** Trait for label parsers. */ +trait LabelParser extends Serializable { + /** Parses a string label into a double label. */ + def parse(labelString: String): Double +} + +/** + * Label parser for binary labels, which outputs 1.0 (positive) if the value is greater than 0.5, + * or 0.0 (negative) otherwise. So it works with +1/-1 labeling and +1/0 labeling. + */ +object BinaryLabelParser extends LabelParser { + /** Gets the default instance of BinaryLabelParser. */ + def getInstance(): LabelParser = this + + /** + * Parses the input label into positive (1.0) if the value is greater than 0.5, + * or negative (0.0) otherwise. + */ + override def parse(labelString: String): Double = if (labelString.toDouble > 0.5) 1.0 else 0.0 +} + +/** + * Label parser for multiclass labels, which converts the input label to double. + */ +object MulticlassLabelParser extends LabelParser { + /** Gets the default instance of MulticlassLabelParser. */ + def getInstance(): LabelParser = this + + override def parse(labelString: String): Double = labelString.toDouble +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala index 81e4eda2a68c4..140ff92869176 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala @@ -22,16 +22,20 @@ import scala.util.Random import org.jblas.DoubleMatrix +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint /** + * :: DeveloperApi :: + * * Generate sample data used for Linear Data. This class generates * uniformly random values for every feature and adds Gaussian noise with mean `eps` to the * response variable `Y`. */ +@DeveloperApi object LinearDataGenerator { /** diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LogisticRegressionDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LogisticRegressionDataGenerator.scala index 61498dcc2be00..ca06b9ad58538 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/LogisticRegressionDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/LogisticRegressionDataGenerator.scala @@ -19,16 +19,19 @@ package org.apache.spark.mllib.util import scala.util.Random +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors /** + * :: DeveloperApi :: + * * Generate test data for LogisticRegression. This class chooses positive labels * with probability `probOne` and scales features for positive examples by `eps`. */ - +@DeveloperApi object LogisticRegressionDataGenerator { /** diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala index 348aba1dea5b6..3bd86d6813375 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala @@ -21,10 +21,13 @@ import scala.util.Random import org.jblas.DoubleMatrix +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD /** + * :: DeveloperApi :: + * * Generate RDD(s) containing data for Matrix Factorization. * * This method samples training entries according to the oversampling factor @@ -47,9 +50,8 @@ import org.apache.spark.rdd.RDD * test (Boolean) Whether to create testing RDD. * testSampFact (Double) Percentage of training data to use as test data. */ - -object MFDataGenerator{ - +@DeveloperApi +object MFDataGenerator { def main(args: Array[String]) { if (args.length < 2) { println("Usage: MFDataGenerator " + diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala index cb85e433bfc73..7f9804deaf33f 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala @@ -20,6 +20,7 @@ package org.apache.spark.mllib.util import breeze.linalg.{Vector => BV, DenseVector => BDV, SparseVector => BSV, squaredDistance => breezeSquaredDistance} +import org.apache.spark.annotation.Experimental import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.mllib.regression.LabeledPoint @@ -38,17 +39,6 @@ object MLUtils { eps } - /** - * Multiclass label parser, which parses a string into double. - */ - val multiclassLabelParser: String => Double = _.toDouble - - /** - * Binary label parser, which outputs 1.0 (positive) if the value is greater than 0.5, - * or 0.0 (negative) otherwise. - */ - val binaryLabelParser: String => Double = label => if (label.toDouble > 0.5) 1.0 else 0.0 - /** * Loads labeled data in the LIBSVM format into an RDD[LabeledPoint]. * The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. @@ -69,7 +59,7 @@ object MLUtils { def loadLibSVMData( sc: SparkContext, path: String, - labelParser: String => Double, + labelParser: LabelParser, numFeatures: Int, minSplits: Int): RDD[LabeledPoint] = { val parsed = sc.textFile(path, minSplits) @@ -89,7 +79,7 @@ object MLUtils { }.reduce(math.max) } parsed.map { items => - val label = labelParser(items.head) + val label = labelParser.parse(items.head) val (indices, values) = items.tail.map { item => val indexAndValue = item.split(':') val index = indexAndValue(0).toInt - 1 @@ -107,14 +97,7 @@ object MLUtils { * with number of features determined automatically and the default number of partitions. */ def loadLibSVMData(sc: SparkContext, path: String): RDD[LabeledPoint] = - loadLibSVMData(sc, path, binaryLabelParser, -1, sc.defaultMinSplits) - - /** - * Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], - * with number of features specified explicitly and the default number of partitions. - */ - def loadLibSVMData(sc: SparkContext, path: String, numFeatures: Int): RDD[LabeledPoint] = - loadLibSVMData(sc, path, binaryLabelParser, numFeatures, sc.defaultMinSplits) + loadLibSVMData(sc, path, BinaryLabelParser, -1, sc.defaultMinSplits) /** * Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], @@ -124,7 +107,7 @@ object MLUtils { def loadLibSVMData( sc: SparkContext, path: String, - labelParser: String => Double): RDD[LabeledPoint] = + labelParser: LabelParser): RDD[LabeledPoint] = loadLibSVMData(sc, path, labelParser, -1, sc.defaultMinSplits) /** @@ -135,11 +118,13 @@ object MLUtils { def loadLibSVMData( sc: SparkContext, path: String, - labelParser: String => Double, + labelParser: LabelParser, numFeatures: Int): RDD[LabeledPoint] = loadLibSVMData(sc, path, labelParser, numFeatures, sc.defaultMinSplits) /** + * :: Experimental :: + * * Load labeled data from a file. The data format used here is * , ... * where , are feature values in Double and is the corresponding label as Double. @@ -149,6 +134,7 @@ object MLUtils { * @return An RDD of LabeledPoint. Each labeled point has two elements: the first element is * the label, and the second element represents the feature values (an array of Double). */ + @Experimental def loadLabeledData(sc: SparkContext, dir: String): RDD[LabeledPoint] = { sc.textFile(dir).map { line => val parts = line.split(',') @@ -159,6 +145,8 @@ object MLUtils { } /** + * :: Experimental :: + * * Save labeled data to a file. The data format used here is * , ... * where , are feature values in Double and is the corresponding label as Double. @@ -166,6 +154,7 @@ object MLUtils { * @param data An RDD of LabeledPoints containing data to be saved. * @param dir Directory to save the data. */ + @Experimental def saveLabeledData(data: RDD[LabeledPoint], dir: String) { val dataStr = data.map(x => x.label + "," + x.features.toArray.mkString(" ")) dataStr.saveAsTextFile(dir) @@ -183,7 +172,7 @@ object MLUtils { * xColMean - Row vector with mean for every column (or feature) of the input data * xColSd - Row vector standard deviation for every column (or feature) of the input data. */ - def computeStats( + private[mllib] def computeStats( data: RDD[LabeledPoint], numFeatures: Int, numExamples: Long): (Double, Vector, Vector) = { diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala index e300c3dbe1fe0..87a6f2a0c3976 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala @@ -21,15 +21,19 @@ import scala.util.Random import org.jblas.DoubleMatrix +import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint /** + * :: DeveloperApi :: + * * Generate sample data used for SVM. This class generates uniform random values * for the features and adds Gaussian noise with weight 0.1 to generate labels. */ +@DeveloperApi object SVMDataGenerator { def main(args: Array[String]) { diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala new file mode 100644 index 0000000000000..82d49c76ed02b --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala @@ -0,0 +1,40 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg + +import org.scalatest.FunSuite + +import breeze.linalg.{DenseMatrix => BDM} + +class BreezeMatrixConversionSuite extends FunSuite { + test("dense matrix to breeze") { + val mat = Matrices.dense(3, 2, Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)) + val breeze = mat.toBreeze.asInstanceOf[BDM[Double]] + assert(breeze.rows === mat.numRows) + assert(breeze.cols === mat.numCols) + assert(breeze.data.eq(mat.asInstanceOf[DenseMatrix].values), "should not copy data") + } + + test("dense breeze matrix to matrix") { + val breeze = new BDM[Double](3, 2, Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)) + val mat = Matrices.fromBreeze(breeze).asInstanceOf[DenseMatrix] + assert(mat.numRows === breeze.rows) + assert(mat.numCols === breeze.cols) + assert(mat.values.eq(breeze.data), "should not copy data") + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala new file mode 100644 index 0000000000000..9c66b4db9f16b --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala @@ -0,0 +1,39 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg + +import org.scalatest.FunSuite + +class MatricesSuite extends FunSuite { + test("dense matrix construction") { + val m = 3 + val n = 2 + val values = Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) + val mat = Matrices.dense(m, n, values).asInstanceOf[DenseMatrix] + assert(mat.numRows === m) + assert(mat.numCols === n) + assert(mat.values.eq(values), "should not copy data") + assert(mat.toArray.eq(values), "toArray should not copy data") + } + + test("dense matrix construction with wrong dimension") { + intercept[RuntimeException] { + Matrices.dense(3, 2, Array(0.0, 1.0, 2.0)) + } + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala deleted file mode 100644 index 5e5086b1bf73e..0000000000000 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -import scala.util.Random - -import org.scalatest.BeforeAndAfterAll -import org.scalatest.FunSuite - -import org.apache.spark.SparkContext -import org.apache.spark.SparkContext._ -import org.apache.spark.rdd.RDD - -import org.apache.spark.mllib.util._ - -import org.jblas._ - -class PCASuite extends FunSuite with BeforeAndAfterAll { - @transient private var sc: SparkContext = _ - - override def beforeAll() { - sc = new SparkContext("local", "test") - } - - override def afterAll() { - sc.stop() - System.clearProperty("spark.driver.port") - } - - val EPSILON = 1e-3 - - // Return jblas matrix from sparse matrix RDD - def getDenseMatrix(matrix: SparseMatrix) : DoubleMatrix = { - val data = matrix.data - val ret = DoubleMatrix.zeros(matrix.m, matrix.n) - matrix.data.collect().map(x => ret.put(x.i, x.j, x.mval)) - ret - } - - def assertMatrixApproximatelyEquals(a: DoubleMatrix, b: DoubleMatrix) { - assert(a.rows == b.rows && a.columns == b.columns, - "dimension mismatch: $a.rows vs $b.rows and $a.columns vs $b.columns") - for (i <- 0 until a.columns) { - val aCol = a.getColumn(i) - val bCol = b.getColumn(i) - val diff = Math.min(aCol.sub(bCol).norm1, aCol.add(bCol).norm1) - assert(diff < EPSILON, "matrix mismatch: " + diff) - } - } - - test("full rank matrix pca") { - val m = 5 - val n = 3 - val dataArr = Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten - val data = sc.makeRDD(dataArr, 3) - val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n)) - - val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602), (0,2,0.7054), - (1,0,-0.1448), (1,1,0.7483), (1,2,0.6474), - (2,0,0.9553), (2,1,-0.0649), (2,2,0.2886)) - val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3)), 3) - - val coeffs = new DoubleMatrix(new PCA().setK(n).compute(a)) - - assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,n)), coeffs) - } - - test("sparse matrix full rank matrix pca") { - val m = 5 - val n = 3 - // the entry that gets dropped is zero to test sparse support - val dataArr = Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten.drop(1) - val data = sc.makeRDD(dataArr, 3) - val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n)) - - val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602), (0,2,0.7054), - (1,0,-0.1448), (1,1,0.7483), (1,2,0.6474), - (2,0,0.9553), (2,1,-0.0649), (2,2,0.2886)) - val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3))) - - val coeffs = new DoubleMatrix(new PCA().setK(n).compute(a)) - - assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,n)), coeffs) - } - - test("truncated matrix pca") { - val m = 5 - val n = 3 - val dataArr = Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten - - val data = sc.makeRDD(dataArr, 3) - val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n)) - - val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602), - (1,0,-0.1448), (1,1,0.7483), - (2,0,0.9553), (2,1,-0.0649)) - val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3))) - - val k = 2 - val coeffs = new DoubleMatrix(new PCA().setK(k).compute(a)) - - assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,k)), coeffs) - } -} - - diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala deleted file mode 100644 index 20e2b0f84be06..0000000000000 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala +++ /dev/null @@ -1,194 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.mllib.linalg - -import scala.util.Random - -import org.scalatest.BeforeAndAfterAll -import org.scalatest.FunSuite - -import org.jblas.{DoubleMatrix, Singular, MatrixFunctions} - -import org.apache.spark.SparkContext -import org.apache.spark.SparkContext._ -import org.apache.spark.rdd.RDD - -import org.apache.spark.mllib.util._ - -import org.jblas._ - -class SVDSuite extends FunSuite with BeforeAndAfterAll { - @transient private var sc: SparkContext = _ - - override def beforeAll() { - sc = new SparkContext("local", "test") - } - - override def afterAll() { - sc.stop() - System.clearProperty("spark.driver.port") - } - - val EPSILON = 1e-4 - - // Return jblas matrix from sparse matrix RDD - def getDenseMatrix(matrix: SparseMatrix) : DoubleMatrix = { - val data = matrix.data - val m = matrix.m - val n = matrix.n - val ret = DoubleMatrix.zeros(m, n) - matrix.data.collect().map(x => ret.put(x.i, x.j, x.mval)) - ret - } - - def assertMatrixApproximatelyEquals(a: DoubleMatrix, b: DoubleMatrix) { - assert(a.rows == b.rows && a.columns == b.columns, - "dimension mismatch: $a.rows vs $b.rows and $a.columns vs $b.columns") - for (i <- 0 until a.columns) { - val aCol = a.getColumn(i) - val bCol = b.getColumn(i) - val diff = Math.min(aCol.sub(bCol).norm1, aCol.add(bCol).norm1) - assert(diff < EPSILON, "matrix mismatch: " + diff) - } - } - - test("full rank matrix svd") { - val m = 10 - val n = 3 - val datarr = Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten - val data = sc.makeRDD(datarr, 3) - - val a = SparseMatrix(data, m, n) - - val decomposed = new SVD().setK(n).compute(a) - val u = decomposed.U - val v = decomposed.V - val s = decomposed.S - - val denseA = getDenseMatrix(a) - val svd = Singular.sparseSVD(denseA) - - val retu = getDenseMatrix(u) - val rets = getDenseMatrix(s) - val retv = getDenseMatrix(v) - - - // check individual decomposition - assertMatrixApproximatelyEquals(retu, svd(0)) - assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1))) - assertMatrixApproximatelyEquals(retv, svd(2)) - - // check multiplication guarantee - assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA) - } - - test("dense full rank matrix svd") { - val m = 10 - val n = 3 - val datarr = Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten - val data = sc.makeRDD(datarr, 3) - - val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n)) - - val decomposed = new SVD().setK(n).setComputeU(true).compute(a) - val u = LAUtils.denseToSparse(decomposed.U) - val v = decomposed.V - val s = decomposed.S - - val denseA = getDenseMatrix(LAUtils.denseToSparse(a)) - val svd = Singular.sparseSVD(denseA) - - val retu = getDenseMatrix(u) - val rets = DoubleMatrix.diag(new DoubleMatrix(s)) - val retv = new DoubleMatrix(v) - - - // check individual decomposition - assertMatrixApproximatelyEquals(retu, svd(0)) - assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1))) - assertMatrixApproximatelyEquals(retv, svd(2)) - - // check multiplication guarantee - assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA) - } - - test("rank one matrix svd") { - val m = 10 - val n = 3 - val data = sc.makeRDD(Array.tabulate(m, n){ (a,b) => - MatrixEntry(a, b, 1.0) }.flatten ) - val k = 1 - - val a = SparseMatrix(data, m, n) - - val decomposed = new SVD().setK(k).compute(a) - val u = decomposed.U - val s = decomposed.S - val v = decomposed.V - val retrank = s.data.collect().length - - assert(retrank == 1, "rank returned not one") - - val denseA = getDenseMatrix(a) - val svd = Singular.sparseSVD(denseA) - - val retu = getDenseMatrix(u) - val rets = getDenseMatrix(s) - val retv = getDenseMatrix(v) - - // check individual decomposition - assertMatrixApproximatelyEquals(retu, svd(0).getColumn(0)) - assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1).getRow(0))) - assertMatrixApproximatelyEquals(retv, svd(2).getColumn(0)) - - // check multiplication guarantee - assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA) - } - - test("truncated with k") { - val m = 10 - val n = 3 - val data = sc.makeRDD(Array.tabulate(m,n){ (a, b) => - MatrixEntry(a, b, (a + 2).toDouble * (b + 1)/(1 + a + b)) }.flatten ) - val a = SparseMatrix(data, m, n) - - val k = 1 // only one svalue above this - - val decomposed = new SVD().setK(k).compute(a) - val u = decomposed.U - val s = decomposed.S - val v = decomposed.V - val retrank = s.data.collect().length - - val denseA = getDenseMatrix(a) - val svd = Singular.sparseSVD(denseA) - - val retu = getDenseMatrix(u) - val rets = getDenseMatrix(s) - val retv = getDenseMatrix(v) - - assert(retrank == 1, "rank returned not one") - - // check individual decomposition - assertMatrixApproximatelyEquals(retu, svd(0).getColumn(0)) - assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1).getRow(0))) - assertMatrixApproximatelyEquals(retv, svd(2).getColumn(0)) - } -} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrixSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrixSuite.scala new file mode 100644 index 0000000000000..cd45438fb628f --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrixSuite.scala @@ -0,0 +1,98 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import org.scalatest.FunSuite + +import breeze.linalg.{DenseMatrix => BDM} + +import org.apache.spark.mllib.util.LocalSparkContext +import org.apache.spark.mllib.linalg.Vectors + +class CoordinateMatrixSuite extends FunSuite with LocalSparkContext { + + val m = 5 + val n = 4 + var mat: CoordinateMatrix = _ + + override def beforeAll() { + super.beforeAll() + val entries = sc.parallelize(Seq( + (0, 0, 1.0), + (0, 1, 2.0), + (1, 1, 3.0), + (1, 2, 4.0), + (2, 2, 5.0), + (2, 3, 6.0), + (3, 0, 7.0), + (3, 3, 8.0), + (4, 1, 9.0)), 3).map { case (i, j, value) => + MatrixEntry(i, j, value) + } + mat = new CoordinateMatrix(entries) + } + + test("size") { + assert(mat.numRows() === m) + assert(mat.numCols() === n) + } + + test("empty entries") { + val entries = sc.parallelize(Seq[MatrixEntry](), 1) + val emptyMat = new CoordinateMatrix(entries) + intercept[RuntimeException] { + emptyMat.numCols() + } + intercept[RuntimeException] { + emptyMat.numRows() + } + } + + test("toBreeze") { + val expected = BDM( + (1.0, 2.0, 0.0, 0.0), + (0.0, 3.0, 4.0, 0.0), + (0.0, 0.0, 5.0, 6.0), + (7.0, 0.0, 0.0, 8.0), + (0.0, 9.0, 0.0, 0.0)) + assert(mat.toBreeze() === expected) + } + + test("toIndexedRowMatrix") { + val indexedRowMatrix = mat.toIndexedRowMatrix() + val expected = BDM( + (1.0, 2.0, 0.0, 0.0), + (0.0, 3.0, 4.0, 0.0), + (0.0, 0.0, 5.0, 6.0), + (7.0, 0.0, 0.0, 8.0), + (0.0, 9.0, 0.0, 0.0)) + assert(indexedRowMatrix.toBreeze() === expected) + } + + test("toRowMatrix") { + val rowMatrix = mat.toRowMatrix() + val rows = rowMatrix.rows.collect().toSet + val expected = Set( + Vectors.dense(1.0, 2.0, 0.0, 0.0), + Vectors.dense(0.0, 3.0, 4.0, 0.0), + Vectors.dense(0.0, 0.0, 5.0, 6.0), + Vectors.dense(7.0, 0.0, 0.0, 8.0), + Vectors.dense(0.0, 9.0, 0.0, 0.0)) + assert(rows === expected) + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrixSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrixSuite.scala new file mode 100644 index 0000000000000..f7c46f23b746d --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrixSuite.scala @@ -0,0 +1,120 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import org.scalatest.FunSuite + +import breeze.linalg.{diag => brzDiag, DenseMatrix => BDM, DenseVector => BDV} + +import org.apache.spark.mllib.util.LocalSparkContext +import org.apache.spark.rdd.RDD +import org.apache.spark.mllib.linalg.{Matrices, Vectors} + +class IndexedRowMatrixSuite extends FunSuite with LocalSparkContext { + + val m = 4 + val n = 3 + val data = Seq( + (0L, Vectors.dense(0.0, 1.0, 2.0)), + (1L, Vectors.dense(3.0, 4.0, 5.0)), + (3L, Vectors.dense(9.0, 0.0, 1.0)) + ).map(x => IndexedRow(x._1, x._2)) + var indexedRows: RDD[IndexedRow] = _ + + override def beforeAll() { + super.beforeAll() + indexedRows = sc.parallelize(data, 2) + } + + test("size") { + val mat1 = new IndexedRowMatrix(indexedRows) + assert(mat1.numRows() === m) + assert(mat1.numCols() === n) + + val mat2 = new IndexedRowMatrix(indexedRows, 5, 0) + assert(mat2.numRows() === 5) + assert(mat2.numCols() === n) + } + + test("empty rows") { + val rows = sc.parallelize(Seq[IndexedRow](), 1) + val mat = new IndexedRowMatrix(rows) + intercept[RuntimeException] { + mat.numRows() + } + intercept[RuntimeException] { + mat.numCols() + } + } + + test("toBreeze") { + val mat = new IndexedRowMatrix(indexedRows) + val expected = BDM( + (0.0, 1.0, 2.0), + (3.0, 4.0, 5.0), + (0.0, 0.0, 0.0), + (9.0, 0.0, 1.0)) + assert(mat.toBreeze() === expected) + } + + test("toRowMatrix") { + val idxRowMat = new IndexedRowMatrix(indexedRows) + val rowMat = idxRowMat.toRowMatrix() + assert(rowMat.numCols() === n) + assert(rowMat.numRows() === 3, "should drop empty rows") + assert(rowMat.rows.collect().toSeq === data.map(_.vector).toSeq) + } + + test("multiply a local matrix") { + val A = new IndexedRowMatrix(indexedRows) + val B = Matrices.dense(3, 2, Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)) + val C = A.multiply(B) + val localA = A.toBreeze() + val localC = C.toBreeze() + val expected = localA * B.toBreeze.asInstanceOf[BDM[Double]] + assert(localC === expected) + } + + test("gram") { + val A = new IndexedRowMatrix(indexedRows) + val G = A.computeGramianMatrix() + val expected = BDM( + (90.0, 12.0, 24.0), + (12.0, 17.0, 22.0), + (24.0, 22.0, 30.0)) + assert(G.toBreeze === expected) + } + + test("svd") { + val A = new IndexedRowMatrix(indexedRows) + val svd = A.computeSVD(n, computeU = true) + assert(svd.U.isInstanceOf[IndexedRowMatrix]) + val localA = A.toBreeze() + val U = svd.U.toBreeze() + val s = svd.s.toBreeze.asInstanceOf[BDV[Double]] + val V = svd.V.toBreeze.asInstanceOf[BDM[Double]] + assert(closeToZero(U.t * U - BDM.eye[Double](n))) + assert(closeToZero(V.t * V - BDM.eye[Double](n))) + assert(closeToZero(U * brzDiag(s) * V.t - localA)) + } + + def closeToZero(G: BDM[Double]): Boolean = { + G.valuesIterator.map(math.abs).sum < 1e-6 + } +} + diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/RowMatrixSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/RowMatrixSuite.scala new file mode 100644 index 0000000000000..71ee8e8a4f6fd --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/distributed/RowMatrixSuite.scala @@ -0,0 +1,173 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.linalg.distributed + +import org.scalatest.FunSuite + +import breeze.linalg.{DenseVector => BDV, DenseMatrix => BDM, norm => brzNorm, svd => brzSvd} + +import org.apache.spark.mllib.util.LocalSparkContext +import org.apache.spark.mllib.linalg.{Matrices, Vectors, Vector} + +class RowMatrixSuite extends FunSuite with LocalSparkContext { + + val m = 4 + val n = 3 + val arr = Array(0.0, 3.0, 6.0, 9.0, 1.0, 4.0, 7.0, 0.0, 2.0, 5.0, 8.0, 1.0) + val denseData = Seq( + Vectors.dense(0.0, 1.0, 2.0), + Vectors.dense(3.0, 4.0, 5.0), + Vectors.dense(6.0, 7.0, 8.0), + Vectors.dense(9.0, 0.0, 1.0) + ) + val sparseData = Seq( + Vectors.sparse(3, Seq((1, 1.0), (2, 2.0))), + Vectors.sparse(3, Seq((0, 3.0), (1, 4.0), (2, 5.0))), + Vectors.sparse(3, Seq((0, 6.0), (1, 7.0), (2, 8.0))), + Vectors.sparse(3, Seq((0, 9.0), (2, 1.0))) + ) + + val principalComponents = BDM( + (0.0, 1.0, 0.0), + (math.sqrt(2.0) / 2.0, 0.0, math.sqrt(2.0) / 2.0), + (math.sqrt(2.0) / 2.0, 0.0, - math.sqrt(2.0) / 2.0)) + + var denseMat: RowMatrix = _ + var sparseMat: RowMatrix = _ + + override def beforeAll() { + super.beforeAll() + denseMat = new RowMatrix(sc.parallelize(denseData, 2)) + sparseMat = new RowMatrix(sc.parallelize(sparseData, 2)) + } + + test("size") { + assert(denseMat.numRows() === m) + assert(denseMat.numCols() === n) + assert(sparseMat.numRows() === m) + assert(sparseMat.numCols() === n) + } + + test("empty rows") { + val rows = sc.parallelize(Seq[Vector](), 1) + val emptyMat = new RowMatrix(rows) + intercept[RuntimeException] { + emptyMat.numCols() + } + intercept[RuntimeException] { + emptyMat.numRows() + } + } + + test("toBreeze") { + val expected = BDM( + (0.0, 1.0, 2.0), + (3.0, 4.0, 5.0), + (6.0, 7.0, 8.0), + (9.0, 0.0, 1.0)) + for (mat <- Seq(denseMat, sparseMat)) { + assert(mat.toBreeze() === expected) + } + } + + test("gram") { + val expected = + Matrices.dense(n, n, Array(126.0, 54.0, 72.0, 54.0, 66.0, 78.0, 72.0, 78.0, 94.0)) + for (mat <- Seq(denseMat, sparseMat)) { + val G = mat.computeGramianMatrix() + assert(G.toBreeze === expected.toBreeze) + } + } + + test("svd of a full-rank matrix") { + for (mat <- Seq(denseMat, sparseMat)) { + val localMat = mat.toBreeze() + val (localU, localSigma, localVt) = brzSvd(localMat) + val localV: BDM[Double] = localVt.t.toDenseMatrix + for (k <- 1 to n) { + val svd = mat.computeSVD(k, computeU = true) + val U = svd.U + val s = svd.s + val V = svd.V + assert(U.numRows() === m) + assert(U.numCols() === k) + assert(s.size === k) + assert(V.numRows === n) + assert(V.numCols === k) + assertColumnEqualUpToSign(U.toBreeze(), localU, k) + assertColumnEqualUpToSign(V.toBreeze.asInstanceOf[BDM[Double]], localV, k) + assert(closeToZero(s.toBreeze.asInstanceOf[BDV[Double]] - localSigma(0 until k))) + } + val svdWithoutU = mat.computeSVD(n) + assert(svdWithoutU.U === null) + } + } + + test("svd of a low-rank matrix") { + val rows = sc.parallelize(Array.fill(4)(Vectors.dense(1.0, 1.0)), 2) + val mat = new RowMatrix(rows, 4, 2) + val svd = mat.computeSVD(2, computeU = true) + assert(svd.s.size === 1, "should not return zero singular values") + assert(svd.U.numRows() === 4) + assert(svd.U.numCols() === 1) + assert(svd.V.numRows === 2) + assert(svd.V.numCols === 1) + } + + def closeToZero(G: BDM[Double]): Boolean = { + G.valuesIterator.map(math.abs).sum < 1e-6 + } + + def closeToZero(v: BDV[Double]): Boolean = { + brzNorm(v, 1.0) < 1e-6 + } + + def assertColumnEqualUpToSign(A: BDM[Double], B: BDM[Double], k: Int) { + assert(A.rows === B.rows) + for (j <- 0 until k) { + val aj = A(::, j) + val bj = B(::, j) + assert(closeToZero(aj - bj) || closeToZero(aj + bj), + s"The $j-th columns mismatch: $aj and $bj") + } + } + + test("pca") { + for (mat <- Seq(denseMat, sparseMat); k <- 1 to n) { + val pc = denseMat.computePrincipalComponents(k) + assert(pc.numRows === n) + assert(pc.numCols === k) + assertColumnEqualUpToSign(pc.toBreeze.asInstanceOf[BDM[Double]], principalComponents, k) + } + } + + test("multiply a local matrix") { + val B = Matrices.dense(n, 2, Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)) + for (mat <- Seq(denseMat, sparseMat)) { + val AB = mat.multiply(B) + assert(AB.numRows() === m) + assert(AB.numCols() === 2) + assert(AB.rows.collect().toSeq === Seq( + Vectors.dense(5.0, 14.0), + Vectors.dense(14.0, 50.0), + Vectors.dense(23.0, 86.0), + Vectors.dense(2.0, 32.0) + )) + } + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/util/LabelParsersSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/util/LabelParsersSuite.scala new file mode 100644 index 0000000000000..ac85677f2f014 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/util/LabelParsersSuite.scala @@ -0,0 +1,41 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.util + +import org.scalatest.FunSuite + +class LabelParsersSuite extends FunSuite { + test("binary label parser") { + for (parser <- Seq(BinaryLabelParser, BinaryLabelParser.getInstance())) { + assert(parser.parse("+1") === 1.0) + assert(parser.parse("1") === 1.0) + assert(parser.parse("0") === 0.0) + assert(parser.parse("-1") === 0.0) + } + } + + test("multiclass label parser") { + for (parser <- Seq(MulticlassLabelParser, MulticlassLabelParser.getInstance())) { + assert(parser.parse("0") == 0.0) + assert(parser.parse("+1") === 1.0) + assert(parser.parse("1") === 1.0) + assert(parser.parse("2") === 2.0) + assert(parser.parse("3") === 3.0) + } + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala index 27d41c7869aa0..e451c350b8d88 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/util/MLUtilsSuite.scala @@ -80,7 +80,7 @@ class MLUtilsSuite extends FunSuite with LocalSparkContext { Files.write(lines, file, Charsets.US_ASCII) val path = tempDir.toURI.toString - val pointsWithNumFeatures = MLUtils.loadLibSVMData(sc, path, 6).collect() + val pointsWithNumFeatures = MLUtils.loadLibSVMData(sc, path, BinaryLabelParser, 6).collect() val pointsWithoutNumFeatures = MLUtils.loadLibSVMData(sc, path).collect() for (points <- Seq(pointsWithNumFeatures, pointsWithoutNumFeatures)) { @@ -93,7 +93,7 @@ class MLUtilsSuite extends FunSuite with LocalSparkContext { assert(points(2).features === Vectors.sparse(6, Seq((1, 4.0), (3, 5.0), (5, 6.0)))) } - val multiclassPoints = MLUtils.loadLibSVMData(sc, path, MLUtils.multiclassLabelParser).collect() + val multiclassPoints = MLUtils.loadLibSVMData(sc, path, MulticlassLabelParser).collect() assert(multiclassPoints.length === 3) assert(multiclassPoints(0).label === 1.0) assert(multiclassPoints(1).label === -1.0) diff --git a/pom.xml b/pom.xml index c03bb35c99442..11511bcb9da52 100644 --- a/pom.xml +++ b/pom.xml @@ -112,7 +112,7 @@ 2.10.4 2.10 - 0.13.0 + 0.17.0 org.spark-project.akka 2.2.3-shaded-protobuf 1.7.5 @@ -848,7 +848,7 @@ - + hadoop-provided @@ -893,6 +893,6 @@ - + diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 6b8740d9f21a1..694f90a83ab67 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -195,6 +195,7 @@ object SparkBuild extends Build { concurrentRestrictions in Global += Tags.limit(Tags.Test, 1), resolvers ++= Seq( + // HTTPS is unavailable for Maven Central "Maven Repository" at "http://repo.maven.apache.org/maven2", "Apache Repository" at "https://repository.apache.org/content/repositories/releases", "JBoss Repository" at "https://repository.jboss.org/nexus/content/repositories/releases/", @@ -332,7 +333,7 @@ object SparkBuild extends Build { "org.json4s" %% "json4s-jackson" % "3.2.6" excludeAll(excludeScalap), "it.unimi.dsi" % "fastutil" % "6.4.4", "colt" % "colt" % "1.2.0", - "org.apache.mesos" % "mesos" % "0.13.0", + "org.apache.mesos" % "mesos" % "0.17.0", "commons-net" % "commons-net" % "2.2", "net.java.dev.jets3t" % "jets3t" % "0.7.1" excludeAll(excludeCommonsLogging), "org.apache.derby" % "derby" % "10.4.2.0" % "test", diff --git a/python/pyspark/join.py b/python/pyspark/join.py index 5f4294fb1b777..6f94d26ef86a9 100644 --- a/python/pyspark/join.py +++ b/python/pyspark/join.py @@ -31,11 +31,12 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ +from pyspark.resultiterable import ResultIterable def _do_python_join(rdd, other, numPartitions, dispatch): vs = rdd.map(lambda (k, v): (k, (1, v))) ws = other.map(lambda (k, v): (k, (2, v))) - return vs.union(ws).groupByKey(numPartitions).flatMapValues(dispatch) + return vs.union(ws).groupByKey(numPartitions).flatMapValues(lambda x : dispatch(x.__iter__())) def python_join(rdd, other, numPartitions): @@ -88,5 +89,5 @@ def dispatch(seq): vbuf.append(v) elif n == 2: wbuf.append(v) - return (vbuf, wbuf) + return (ResultIterable(vbuf), ResultIterable(wbuf)) return vs.union(ws).groupByKey(numPartitions).mapValues(dispatch) diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index fb27863e07f55..91fc7e637e2c6 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -38,6 +38,7 @@ from pyspark.statcounter import StatCounter from pyspark.rddsampler import RDDSampler from pyspark.storagelevel import StorageLevel +from pyspark.resultiterable import ResultIterable from py4j.java_collections import ListConverter, MapConverter @@ -1118,7 +1119,7 @@ def groupByKey(self, numPartitions=None): Hash-partitions the resulting RDD with into numPartitions partitions. >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) - >>> sorted(x.groupByKey().collect()) + >>> map((lambda (x,y): (x, list(y))), sorted(x.groupByKey().collect())) [('a', [1, 1]), ('b', [1])] """ @@ -1133,7 +1134,7 @@ def mergeCombiners(a, b): return a + b return self.combineByKey(createCombiner, mergeValue, mergeCombiners, - numPartitions) + numPartitions).mapValues(lambda x: ResultIterable(x)) # TODO: add tests def flatMapValues(self, f): @@ -1180,7 +1181,7 @@ def cogroup(self, other, numPartitions=None): >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) - >>> sorted(x.cogroup(y).collect()) + >>> map((lambda (x,y): (x, (list(y[0]), list(y[1])))), sorted(list(x.cogroup(y).collect()))) [('a', ([1], [2])), ('b', ([4], []))] """ return python_cogroup(self, other, numPartitions) @@ -1217,7 +1218,7 @@ def keyBy(self, f): >>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) >>> y = sc.parallelize(zip(range(0,5), range(0,5))) - >>> sorted(x.cogroup(y).collect()) + >>> map((lambda (x,y): (x, (list(y[0]), (list(y[1]))))), sorted(x.cogroup(y).collect())) [(0, ([0], [0])), (1, ([1], [1])), (2, ([], [2])), (3, ([], [3])), (4, ([2], [4]))] """ return self.map(lambda x: (f(x), x)) @@ -1317,7 +1318,6 @@ def getStorageLevel(self): # keys in the pairs. This could be an expensive operation, since those # hashes aren't retained. - class PipelinedRDD(RDD): """ Pipelined maps: diff --git a/python/pyspark/resultiterable.py b/python/pyspark/resultiterable.py new file mode 100644 index 0000000000000..7f418f8d2e29a --- /dev/null +++ b/python/pyspark/resultiterable.py @@ -0,0 +1,33 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +__all__ = ["ResultIterable"] + +import collections + +class ResultIterable(collections.Iterable): + """ + A special result iterable. This is used because the standard iterator can not be pickled + """ + def __init__(self, data): + self.data = data + self.index = 0 + self.maxindex = len(data) + def __iter__(self): + return iter(self.data) + def __len__(self): + return len(self.data) diff --git a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala index bf73800388ebf..a30dcfdcecf27 100644 --- a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala +++ b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala @@ -26,21 +26,23 @@ import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.SparkEnv import org.apache.spark.util.Utils - +import org.apache.spark.util.ParentClassLoader import com.esotericsoftware.reflectasm.shaded.org.objectweb.asm._ import com.esotericsoftware.reflectasm.shaded.org.objectweb.asm.Opcodes._ - /** * A ClassLoader that reads classes from a Hadoop FileSystem or HTTP URI, - * used to load classes defined by the interpreter when the REPL is used - */ -class ExecutorClassLoader(classUri: String, parent: ClassLoader) -extends ClassLoader(parent) { + * used to load classes defined by the interpreter when the REPL is used. + * Allows the user to specify if user class path should be first + */ +class ExecutorClassLoader(classUri: String, parent: ClassLoader, + userClassPathFirst: Boolean) extends ClassLoader { val uri = new URI(classUri) val directory = uri.getPath + val parentLoader = new ParentClassLoader(parent) + // Hadoop FileSystem object for our URI, if it isn't using HTTP var fileSystem: FileSystem = { if (uri.getScheme() == "http") { @@ -49,8 +51,27 @@ extends ClassLoader(parent) { FileSystem.get(uri, new Configuration()) } } - + override def findClass(name: String): Class[_] = { + userClassPathFirst match { + case true => findClassLocally(name).getOrElse(parentLoader.loadClass(name)) + case false => { + try { + parentLoader.loadClass(name) + } catch { + case e: ClassNotFoundException => { + val classOption = findClassLocally(name) + classOption match { + case None => throw new ClassNotFoundException(name, e) + case Some(a) => a + } + } + } + } + } + } + + def findClassLocally(name: String): Option[Class[_]] = { try { val pathInDirectory = name.replace('.', '/') + ".class" val inputStream = { @@ -68,9 +89,9 @@ extends ClassLoader(parent) { } val bytes = readAndTransformClass(name, inputStream) inputStream.close() - return defineClass(name, bytes, 0, bytes.length) + Some(defineClass(name, bytes, 0, bytes.length)) } catch { - case e: Exception => throw new ClassNotFoundException(name, e) + case e: Exception => None } } diff --git a/repl/src/test/scala/org/apache/spark/repl/ExecutorClassLoaderSuite.scala b/repl/src/test/scala/org/apache/spark/repl/ExecutorClassLoaderSuite.scala new file mode 100644 index 0000000000000..336df988a1b7f --- /dev/null +++ b/repl/src/test/scala/org/apache/spark/repl/ExecutorClassLoaderSuite.scala @@ -0,0 +1,76 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.repl + +import java.io.File +import java.net.URLClassLoader + +import org.scalatest.BeforeAndAfterAll +import org.scalatest.FunSuite + +import com.google.common.io.Files + +import org.apache.spark.TestUtils + +class ExecutorClassLoaderSuite extends FunSuite with BeforeAndAfterAll { + + val childClassNames = List("ReplFakeClass1", "ReplFakeClass2") + val parentClassNames = List("ReplFakeClass1", "ReplFakeClass2", "ReplFakeClass3") + val tempDir1 = Files.createTempDir() + val tempDir2 = Files.createTempDir() + val url1 = "file://" + tempDir1 + val urls2 = List(tempDir2.toURI.toURL).toArray + + override def beforeAll() { + childClassNames.foreach(TestUtils.createCompiledClass(_, tempDir1, "1")) + parentClassNames.foreach(TestUtils.createCompiledClass(_, tempDir2, "2")) + } + + test("child first") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ExecutorClassLoader(url1, parentLoader, true) + val fakeClass = classLoader.loadClass("ReplFakeClass2").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "1") + } + + test("parent first") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ExecutorClassLoader(url1, parentLoader, false) + val fakeClass = classLoader.loadClass("ReplFakeClass1").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "2") + } + + test("child first can fall back") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ExecutorClassLoader(url1, parentLoader, true) + val fakeClass = classLoader.loadClass("ReplFakeClass3").newInstance() + val fakeClassVersion = fakeClass.toString + assert(fakeClassVersion === "2") + } + + test("child first can fail") { + val parentLoader = new URLClassLoader(urls2, null) + val classLoader = new ExecutorClassLoader(url1, parentLoader, true) + intercept[java.lang.ClassNotFoundException] { + classLoader.loadClass("ReplFakeClassDoesNotExist").newInstance() + } + } + +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Row.scala index 0f06ea088e1a1..77b5429bad432 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Row.scala @@ -90,7 +90,7 @@ trait MutableRow extends Row { def setString(ordinal: Int, value: String) /** - * EXPERIMENTAL + * Experimental * * Returns a mutable string builder for the specified column. A given row should return the * result of any mutations made to the returned buffer next time getString is called for the same diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index 3193787680d16..d3d4c56bafe41 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -21,6 +21,7 @@ import scala.language.implicitConversions import scala.reflect.runtime.universe.TypeTag import org.apache.spark.SparkContext +import org.apache.spark.annotation.{AlphaComponent, Experimental} import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.analysis._ import org.apache.spark.sql.catalyst.dsl @@ -32,14 +33,14 @@ import org.apache.spark.sql.columnar.InMemoryColumnarTableScan import org.apache.spark.sql.execution._ /** - * ALPHA COMPONENT - * + * :: AlphaComponent :: * The entry point for running relational queries using Spark. Allows the creation of [[SchemaRDD]] * objects and the execution of SQL queries. * * @groupname userf Spark SQL Functions * @groupname Ungrouped Support functions for language integrated queries. */ +@AlphaComponent class SQLContext(@transient val sparkContext: SparkContext) extends Logging with dsl.ExpressionConversions @@ -63,12 +64,12 @@ class SQLContext(@transient val sparkContext: SparkContext) new this.QueryExecution { val logical = plan } /** - * EXPERIMENTAL - * + * :: Experimental :: * Allows catalyst LogicalPlans to be executed as a SchemaRDD. Note that the LogicalPlan * interface is considered internal, and thus not guranteed to be stable. As a result, using * them directly is not reccomended. */ + @Experimental implicit def logicalPlanToSparkQuery(plan: LogicalPlan): SchemaRDD = new SchemaRDD(this, plan) /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala index fc95781448569..16da7fd92bffe 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala @@ -18,6 +18,7 @@ package org.apache.spark.sql import org.apache.spark.{Dependency, OneToOneDependency, Partition, TaskContext} +import org.apache.spark.annotation.{AlphaComponent, Experimental} import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.analysis._ import org.apache.spark.sql.catalyst.expressions._ @@ -26,8 +27,7 @@ import org.apache.spark.sql.catalyst.plans.{Inner, JoinType} import org.apache.spark.sql.catalyst.types.BooleanType /** - * ALPHA COMPONENT - * + * :: AlphaComponent :: * An RDD of [[Row]] objects that has an associated schema. In addition to standard RDD functions, * SchemaRDDs can be used in relational queries, as shown in the examples below. * @@ -90,6 +90,7 @@ import org.apache.spark.sql.catalyst.types.BooleanType * @groupprio schema -1 * @groupname Ungrouped Base RDD Functions */ +@AlphaComponent class SchemaRDD( @transient val sqlContext: SQLContext, @transient protected[spark] val logicalPlan: LogicalPlan) @@ -228,8 +229,7 @@ class SchemaRDD( Filter(ScalaUdf(udf, BooleanType, Seq(UnresolvedAttribute(arg1.name))), logicalPlan)) /** - * EXPERIMENTAL - * + * :: Experimental :: * Filters tuples using a function over a `Dynamic` version of a given Row. DynamicRows use * scala's Dynamic trait to emulate an ORM of in a dynamically typed language. Since the type of * the column is not known at compile time, all attributes are converted to strings before @@ -241,18 +241,19 @@ class SchemaRDD( * * @group Query */ + @Experimental def where(dynamicUdf: (DynamicRow) => Boolean) = new SchemaRDD( sqlContext, Filter(ScalaUdf(dynamicUdf, BooleanType, Seq(WrapDynamic(logicalPlan.output))), logicalPlan)) /** - * EXPERIMENTAL - * + * :: Experimental :: * Returns a sampled version of the underlying dataset. * * @group Query */ + @Experimental def sample( fraction: Double, withReplacement: Boolean = true, @@ -260,8 +261,7 @@ class SchemaRDD( new SchemaRDD(sqlContext, Sample(fraction, withReplacement, seed, logicalPlan)) /** - * EXPERIMENTAL - * + * :: Experimental :: * Applies the given Generator, or table generating function, to this relation. * * @param generator A table generating function. The API for such functions is likely to change @@ -277,6 +277,7 @@ class SchemaRDD( * * @group Query */ + @Experimental def generate( generator: Generator, join: Boolean = false, @@ -285,8 +286,7 @@ class SchemaRDD( new SchemaRDD(sqlContext, Generate(generator, join, outer, None, logicalPlan)) /** - * EXPERIMENTAL - * + * :: Experimental :: * Adds the rows from this RDD to the specified table. Note in a standard [[SQLContext]] there is * no notion of persistent tables, and thus queries that contain this operator will fail to * optimize. When working with an extension of a SQLContext that has a persistent catalog, such @@ -294,6 +294,7 @@ class SchemaRDD( * * @group schema */ + @Experimental def insertInto(tableName: String, overwrite: Boolean = false) = new SchemaRDD( sqlContext, diff --git a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaPairDStream.scala b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaPairDStream.scala index ac451d1913aaa..2ac943d7bf781 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaPairDStream.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaPairDStream.scala @@ -17,7 +17,7 @@ package org.apache.spark.streaming.api.java -import java.lang.{Long => JLong} +import java.lang.{Long => JLong, Iterable => JIterable} import java.util.{List => JList} import scala.collection.JavaConversions._ @@ -115,15 +115,15 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with Spark's default number of partitions. */ - def groupByKey(): JavaPairDStream[K, JList[V]] = - dstream.groupByKey().mapValues(seqAsJavaList _) + def groupByKey(): JavaPairDStream[K, JIterable[V]] = + dstream.groupByKey().mapValues(asJavaIterable _) /** * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with `numPartitions` partitions. */ - def groupByKey(numPartitions: Int): JavaPairDStream[K, JList[V]] = - dstream.groupByKey(numPartitions).mapValues(seqAsJavaList _) + def groupByKey(numPartitions: Int): JavaPairDStream[K, JIterable[V]] = + dstream.groupByKey(numPartitions).mapValues(asJavaIterable _) /** * Return a new DStream by applying `groupByKey` on each RDD of `this` DStream. @@ -131,8 +131,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * single sequence to generate the RDDs of the new DStream. org.apache.spark.Partitioner * is used to control the partitioning of each RDD. */ - def groupByKey(partitioner: Partitioner): JavaPairDStream[K, JList[V]] = - dstream.groupByKey(partitioner).mapValues(seqAsJavaList _) + def groupByKey(partitioner: Partitioner): JavaPairDStream[K, JIterable[V]] = + dstream.groupByKey(partitioner).mapValues(asJavaIterable _) /** * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are @@ -196,8 +196,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval */ - def groupByKeyAndWindow(windowDuration: Duration): JavaPairDStream[K, JList[V]] = { - dstream.groupByKeyAndWindow(windowDuration).mapValues(seqAsJavaList _) + def groupByKeyAndWindow(windowDuration: Duration): JavaPairDStream[K, JIterable[V]] = { + dstream.groupByKeyAndWindow(windowDuration).mapValues(asJavaIterable _) } /** @@ -211,8 +211,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * DStream's batching interval */ def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration) - : JavaPairDStream[K, JList[V]] = { - dstream.groupByKeyAndWindow(windowDuration, slideDuration).mapValues(seqAsJavaList _) + : JavaPairDStream[K, JIterable[V]] = { + dstream.groupByKeyAndWindow(windowDuration, slideDuration).mapValues(asJavaIterable _) } /** @@ -227,9 +227,9 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * @param numPartitions Number of partitions of each RDD in the new DStream. */ def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration, numPartitions: Int) - :JavaPairDStream[K, JList[V]] = { + :JavaPairDStream[K, JIterable[V]] = { dstream.groupByKeyAndWindow(windowDuration, slideDuration, numPartitions) - .mapValues(seqAsJavaList _) + .mapValues(asJavaIterable _) } /** @@ -247,9 +247,9 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner - ):JavaPairDStream[K, JList[V]] = { + ):JavaPairDStream[K, JIterable[V]] = { dstream.groupByKeyAndWindow(windowDuration, slideDuration, partitioner) - .mapValues(seqAsJavaList _) + .mapValues(asJavaIterable _) } /** @@ -518,9 +518,9 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * Hash partitioning is used to generate the RDDs with Spark's default number * of partitions. */ - def cogroup[W](other: JavaPairDStream[K, W]): JavaPairDStream[K, (JList[V], JList[W])] = { + def cogroup[W](other: JavaPairDStream[K, W]): JavaPairDStream[K, (JIterable[V], JIterable[W])] = { implicit val cm: ClassTag[W] = fakeClassTag - dstream.cogroup(other.dstream).mapValues(t => (seqAsJavaList(t._1), seqAsJavaList((t._2)))) + dstream.cogroup(other.dstream).mapValues(t => (asJavaIterable(t._1), asJavaIterable((t._2)))) } /** @@ -530,10 +530,10 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( def cogroup[W]( other: JavaPairDStream[K, W], numPartitions: Int - ): JavaPairDStream[K, (JList[V], JList[W])] = { + ): JavaPairDStream[K, (JIterable[V], JIterable[W])] = { implicit val cm: ClassTag[W] = fakeClassTag dstream.cogroup(other.dstream, numPartitions) - .mapValues(t => (seqAsJavaList(t._1), seqAsJavaList((t._2)))) + .mapValues(t => (asJavaIterable(t._1), asJavaIterable((t._2)))) } /** @@ -543,10 +543,10 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( def cogroup[W]( other: JavaPairDStream[K, W], partitioner: Partitioner - ): JavaPairDStream[K, (JList[V], JList[W])] = { + ): JavaPairDStream[K, (JIterable[V], JIterable[W])] = { implicit val cm: ClassTag[W] = fakeClassTag dstream.cogroup(other.dstream, partitioner) - .mapValues(t => (seqAsJavaList(t._1), seqAsJavaList((t._2)))) + .mapValues(t => (asJavaIterable(t._1), asJavaIterable((t._2)))) } /** diff --git a/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala b/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala index 2473496949360..354bc132dcdc0 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala @@ -51,7 +51,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with Spark's default number of partitions. */ - def groupByKey(): DStream[(K, Seq[V])] = { + def groupByKey(): DStream[(K, Iterable[V])] = { groupByKey(defaultPartitioner()) } @@ -59,7 +59,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with `numPartitions` partitions. */ - def groupByKey(numPartitions: Int): DStream[(K, Seq[V])] = { + def groupByKey(numPartitions: Int): DStream[(K, Iterable[V])] = { groupByKey(defaultPartitioner(numPartitions)) } @@ -67,12 +67,12 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * Return a new DStream by applying `groupByKey` on each RDD. The supplied * org.apache.spark.Partitioner is used to control the partitioning of each RDD. */ - def groupByKey(partitioner: Partitioner): DStream[(K, Seq[V])] = { + def groupByKey(partitioner: Partitioner): DStream[(K, Iterable[V])] = { val createCombiner = (v: V) => ArrayBuffer[V](v) val mergeValue = (c: ArrayBuffer[V], v: V) => (c += v) val mergeCombiner = (c1: ArrayBuffer[V], c2: ArrayBuffer[V]) => (c1 ++ c2) combineByKey(createCombiner, mergeValue, mergeCombiner, partitioner) - .asInstanceOf[DStream[(K, Seq[V])]] + .asInstanceOf[DStream[(K, Iterable[V])]] } /** @@ -126,7 +126,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval */ - def groupByKeyAndWindow(windowDuration: Duration): DStream[(K, Seq[V])] = { + def groupByKeyAndWindow(windowDuration: Duration): DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, self.slideDuration, defaultPartitioner()) } @@ -140,7 +140,8 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval */ - def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration): DStream[(K, Seq[V])] = + def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration) + : DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner()) } @@ -161,7 +162,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) windowDuration: Duration, slideDuration: Duration, numPartitions: Int - ): DStream[(K, Seq[V])] = { + ): DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner(numPartitions)) } @@ -180,14 +181,14 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner - ): DStream[(K, Seq[V])] = { - val createCombiner = (v: Seq[V]) => new ArrayBuffer[V] ++= v - val mergeValue = (buf: ArrayBuffer[V], v: Seq[V]) => buf ++= v + ): DStream[(K, Iterable[V])] = { + val createCombiner = (v: Iterable[V]) => new ArrayBuffer[V] ++= v + val mergeValue = (buf: ArrayBuffer[V], v: Iterable[V]) => buf ++= v val mergeCombiner = (buf1: ArrayBuffer[V], buf2: ArrayBuffer[V]) => buf1 ++= buf2 self.groupByKey(partitioner) .window(windowDuration, slideDuration) .combineByKey[ArrayBuffer[V]](createCombiner, mergeValue, mergeCombiner, partitioner) - .asInstanceOf[DStream[(K, Seq[V])]] + .asInstanceOf[DStream[(K, Iterable[V])]] } /** @@ -438,7 +439,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * Hash partitioning is used to generate the RDDs with Spark's default number * of partitions. */ - def cogroup[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Seq[V], Seq[W]))] = { + def cogroup[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner()) } @@ -447,7 +448,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) * Hash partitioning is used to generate the RDDs with `numPartitions` partitions. */ def cogroup[W: ClassTag](other: DStream[(K, W)], numPartitions: Int) - : DStream[(K, (Seq[V], Seq[W]))] = { + : DStream[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner(numPartitions)) } @@ -458,7 +459,7 @@ class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) def cogroup[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner - ): DStream[(K, (Seq[V], Seq[W]))] = { + ): DStream[(K, (Iterable[V], Iterable[W]))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.cogroup(rdd2, partitioner) diff --git a/streaming/src/main/scala/org/apache/spark/streaming/dstream/StateDStream.scala b/streaming/src/main/scala/org/apache/spark/streaming/dstream/StateDStream.scala index 5f7d3ba26c656..7e22268767de7 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/dstream/StateDStream.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/dstream/StateDStream.scala @@ -56,9 +56,14 @@ class StateDStream[K: ClassTag, V: ClassTag, S: ClassTag]( // first map the cogrouped tuple to tuples of required type, // and then apply the update function val updateFuncLocal = updateFunc - val finalFunc = (iterator: Iterator[(K, (Seq[V], Seq[S]))]) => { + val finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => { val i = iterator.map(t => { - (t._1, t._2._1, t._2._2.headOption) + val itr = t._2._2.iterator + val headOption = itr.hasNext match { + case true => Some(itr.next()) + case false => None + } + (t._1, t._2._1.toSeq, headOption) }) updateFuncLocal(i) } @@ -90,8 +95,8 @@ class StateDStream[K: ClassTag, V: ClassTag, S: ClassTag]( // first map the grouped tuple to tuples of required type, // and then apply the update function val updateFuncLocal = updateFunc - val finalFunc = (iterator: Iterator[(K, Seq[V])]) => { - updateFuncLocal(iterator.map(tuple => (tuple._1, tuple._2, None))) + val finalFunc = (iterator: Iterator[(K, Iterable[V])]) => { + updateFuncLocal(iterator.map(tuple => (tuple._1, tuple._2.toSeq, None))) } val groupedRDD = parentRDD.groupByKey(partitioner) diff --git a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java index e93bf18b6d0b9..13fa64894b773 100644 --- a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java +++ b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java @@ -23,6 +23,7 @@ import org.junit.Test; import java.io.*; import java.util.*; +import java.lang.Iterable; import com.google.common.base.Optional; import com.google.common.collect.Lists; @@ -45,6 +46,18 @@ // see http://stackoverflow.com/questions/758570/. public class JavaAPISuite extends LocalJavaStreamingContext implements Serializable { + public void equalIterator(Iterator a, Iterator b) { + while (a.hasNext() && b.hasNext()) { + Assert.assertEquals(a.next(), b.next()); + } + Assert.assertEquals(a.hasNext(), b.hasNext()); + } + + public void equalIterable(Iterable a, Iterable b) { + equalIterator(a.iterator(), b.iterator()); + } + + @SuppressWarnings("unchecked") @Test public void testCount() { @@ -1016,11 +1029,24 @@ public void testPairGroupByKey() { JavaDStream> stream = JavaTestUtils.attachTestInputStream(ssc, inputData, 1); JavaPairDStream pairStream = JavaPairDStream.fromJavaDStream(stream); - JavaPairDStream> grouped = pairStream.groupByKey(); + JavaPairDStream> grouped = pairStream.groupByKey(); JavaTestUtils.attachTestOutputStream(grouped); - List>>> result = JavaTestUtils.runStreams(ssc, 2, 2); - - Assert.assertEquals(expected, result); + List>>> result = JavaTestUtils.runStreams(ssc, 2, 2); + + Assert.assertEquals(expected.size(), result.size()); + Iterator>>> resultItr = result.iterator(); + Iterator>>> expectedItr = expected.iterator(); + while (resultItr.hasNext() && expectedItr.hasNext()) { + Iterator>> resultElements = resultItr.next().iterator(); + Iterator>> expectedElements = expectedItr.next().iterator(); + while (resultElements.hasNext() && expectedElements.hasNext()) { + Tuple2> resultElement = resultElements.next(); + Tuple2> expectedElement = expectedElements.next(); + Assert.assertEquals(expectedElement._1(), resultElement._1()); + equalIterable(expectedElement._2(), resultElement._2()); + } + Assert.assertEquals(resultElements.hasNext(), expectedElements.hasNext()); + } } @SuppressWarnings("unchecked") @@ -1128,7 +1154,7 @@ public void testGroupByKeyAndWindow() { JavaDStream> stream = JavaTestUtils.attachTestInputStream(ssc, inputData, 1); JavaPairDStream pairStream = JavaPairDStream.fromJavaDStream(stream); - JavaPairDStream> groupWindowed = + JavaPairDStream> groupWindowed = pairStream.groupByKeyAndWindow(new Duration(2000), new Duration(1000)); JavaTestUtils.attachTestOutputStream(groupWindowed); List>>> result = JavaTestUtils.runStreams(ssc, 3, 3); @@ -1471,11 +1497,25 @@ public void testCoGroup() { ssc, stringStringKVStream2, 1); JavaPairDStream pairStream2 = JavaPairDStream.fromJavaDStream(stream2); - JavaPairDStream, List>> grouped = pairStream1.cogroup(pairStream2); + JavaPairDStream, Iterable>> grouped = pairStream1.cogroup(pairStream2); JavaTestUtils.attachTestOutputStream(grouped); - List, List>>>> result = JavaTestUtils.runStreams(ssc, 2, 2); - - Assert.assertEquals(expected, result); + List, Iterable>>>> result = JavaTestUtils.runStreams(ssc, 2, 2); + + Assert.assertEquals(expected.size(), result.size()); + Iterator, Iterable>>>> resultItr = result.iterator(); + Iterator, List>>>> expectedItr = expected.iterator(); + while (resultItr.hasNext() && expectedItr.hasNext()) { + Iterator, Iterable>>> resultElements = resultItr.next().iterator(); + Iterator, List>>> expectedElements = expectedItr.next().iterator(); + while (resultElements.hasNext() && expectedElements.hasNext()) { + Tuple2, Iterable>> resultElement = resultElements.next(); + Tuple2, List>> expectedElement = expectedElements.next(); + Assert.assertEquals(expectedElement._1(), resultElement._1()); + equalIterable(expectedElement._2()._1(), resultElement._2()._1()); + equalIterable(expectedElement._2()._2(), resultElement._2()._2()); + } + Assert.assertEquals(resultElements.hasNext(), expectedElements.hasNext()); + } } @SuppressWarnings("unchecked") diff --git a/streaming/src/test/scala/org/apache/spark/streaming/BasicOperationsSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/BasicOperationsSuite.scala index bb73dbf29b649..8aec27e39478a 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/BasicOperationsSuite.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/BasicOperationsSuite.scala @@ -117,7 +117,7 @@ class BasicOperationsSuite extends TestSuiteBase { test("groupByKey") { testOperation( Seq( Seq("a", "a", "b"), Seq("", ""), Seq() ), - (s: DStream[String]) => s.map(x => (x, 1)).groupByKey(), + (s: DStream[String]) => s.map(x => (x, 1)).groupByKey().mapValues(_.toSeq), Seq( Seq(("a", Seq(1, 1)), ("b", Seq(1))), Seq(("", Seq(1, 1))), Seq() ), true ) @@ -251,7 +251,7 @@ class BasicOperationsSuite extends TestSuiteBase { Seq( ) ) val operation = (s1: DStream[String], s2: DStream[String]) => { - s1.map(x => (x,1)).cogroup(s2.map(x => (x, "x"))) + s1.map(x => (x,1)).cogroup(s2.map(x => (x, "x"))).mapValues(x => (x._1.toSeq, x._2.toSeq)) } testOperation(inputData1, inputData2, operation, outputData, true) } diff --git a/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala b/tools/src/main/scala/org/apache/spark/tools/StoragePerfTester.scala similarity index 97% rename from core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala rename to tools/src/main/scala/org/apache/spark/tools/StoragePerfTester.scala index 8cea302eb14c3..8e8c35615a711 100644 --- a/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala +++ b/tools/src/main/scala/org/apache/spark/tools/StoragePerfTester.scala @@ -15,7 +15,7 @@ * limitations under the License. */ -package org.apache.spark.storage +package org.apache.spark.tools import java.util.concurrent.{CountDownLatch, Executors} import java.util.concurrent.atomic.AtomicLong @@ -25,7 +25,7 @@ import org.apache.spark.serializer.KryoSerializer import org.apache.spark.util.Utils /** - * Utility for micro-benchmarking shuffle write performance. + * Internal utility for micro-benchmarking shuffle write performance. * * Writes simulated shuffle output from several threads and records the observed throughput. */ diff --git a/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala index 30735cbfdf26e..c8a4d2e647cbd 100644 --- a/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala +++ b/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -18,7 +18,6 @@ package org.apache.spark.deploy.yarn import java.io.IOException -import java.net.Socket import java.util.concurrent.CopyOnWriteArrayList import java.util.concurrent.atomic.{AtomicInteger, AtomicReference} @@ -36,7 +35,7 @@ import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.yarn.ipc.YarnRPC import org.apache.hadoop.yarn.util.{ConverterUtils, Records} -import org.apache.hadoop.yarn.webapp.util.WebAppUtils; +import org.apache.hadoop.yarn.webapp.util.WebAppUtils import org.apache.spark.{Logging, SecurityManager, SparkConf, SparkContext} import org.apache.spark.deploy.SparkHadoopUtil