From e00980f77e2f280d39b769e82a653ee61fa0a447 Mon Sep 17 00:00:00 2001 From: Michael Armbrust Date: Wed, 9 Apr 2014 00:26:42 -0700 Subject: [PATCH] First draft of python sql programming guide. --- docs/sql-programming-guide.md | 96 +++++++++++++++++++++++++++++++++-- 1 file changed, 92 insertions(+), 4 deletions(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index a59393e1424de..12ff7fd993ca5 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -20,7 +20,7 @@ a schema that describes the data types of each column in the row. A SchemaRDD i in a traditional relational database. A SchemaRDD can be created from an existing RDD, parquet file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). -**All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell.** +**All of the examples on this page use sample data included in the Spark distribution and can be run in the `spark-shell`.** @@ -33,6 +33,19 @@ a schema that describes the data types of each column in the row. A JavaSchemaR in a traditional relational database. A JavaSchemaRDD can be created from an existing RDD, parquet file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). + +
+ +Spark SQL allows relational queries expressed in SQL or HiveQL to be executed using +Spark. At the core of this component is a new type of RDD, +[SchemaRDD](). SchemaRDDs are composed +[Row]() objects along with +a schema that describes the data types of each column in the row. A SchemaRDD is similar to a table +in a traditional relational database. A SchemaRDD can be created from an existing RDD, parquet +file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). + +**All of the examples on this page use sample data included in the Spark distribution and can be run in the `pyspark` shell.** +
*************************************************************************************************** @@ -44,7 +57,7 @@ file, or by running HiveQL against data stored in [Apache Hive](http://hive.apac The entry point into all relational functionality in Spark is the [SQLContext](api/sql/core/index.html#org.apache.spark.sql.SQLContext) class, or one of its -decendents. To create a basic SQLContext, all you need is a SparkContext. +descendants. To create a basic SQLContext, all you need is a SparkContext. {% highlight scala %} val sc: SparkContext // An existing SparkContext. @@ -60,7 +73,7 @@ import sqlContext._ The entry point into all relational functionality in Spark is the [JavaSQLContext](api/sql/core/index.html#org.apache.spark.sql.api.java.JavaSQLContext) class, or one -of its decendents. To create a basic JavaSQLContext, all you need is a JavaSparkContext. +of its descendants. To create a basic JavaSQLContext, all you need is a JavaSparkContext. {% highlight java %} JavaSparkContext ctx = ...; // An existing JavaSparkContext. @@ -69,6 +82,19 @@ JavaSQLContext sqlCtx = new org.apache.spark.sql.api.java.JavaSQLContext(ctx); +
+ +The entry point into all relational functionality in Spark is the +[SQLContext]() class, or one +of its decedents. To create a basic SQLContext, all you need is a SparkContext. + +{% highlight python %} +from pyspark.context import SQLContext +sqlCtx = SQLContext(sc) +{% endhighlight %} + +
+ ## Running SQL on RDDs @@ -81,7 +107,7 @@ One type of table that is supported by Spark SQL is an RDD of Scala case classes defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Sequences or Arrays. This RDD can be implicitly converted to a SchemaRDD and then be -registered as a table. Tables can used in subsequent SQL statements. +registered as a table. Tables can be used in subsequent SQL statements. {% highlight scala %} val sqlContext = new org.apache.spark.sql.SQLContext(sc) @@ -176,6 +202,27 @@ List teenagerNames = teenagers.map(new Function() { +
+ +One type of table that is supported by Spark SQL is an RDD of dictionaries. The keys of the +dictionary define the columns names of the table, and the types are inferred by looking at the first +row. Any RDD of dictionaries can converted to a SchemaRDD and then registered as a table. Tables +can be used in subsequent SQL statements. + +{% highlight python %} +lines = sc.textFile("examples/src/main/resources/people.txt") +parts = lines.map(lambda l: l.split(",")) +people = parts.map(lambda p: {"name": p[0], "age": int(p[1])}) + +peopleTable = sqlCtx.inferSchema(people) +peopleTable.registerAsTable("people") + +teenagers = sqlCtx.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") +teenNames = teenagers.map(lambda p: "Name: " + p.name) +{% endhighlight %} + +
+ **Note that Spark SQL currently uses a very basic SQL parser.** @@ -231,6 +278,27 @@ parquetFile.registerAsTable("parquetFile"); JavaSchemaRDD teenagers = sqlCtx.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19"); +{% endhighlight %} + + + +
+ +{% highlight python %} + +peopleTable # The SchemaRDD from the previous example. + +# JavaSchemaRDDs can be saved as parquet files, maintaining the schema information. +peopleTable.saveAsParquetFile("people.parquet") + +// Read in the parquet file created above. Parquet files are self-describing so the schema is preserved. +// The result of loading a parquet file is also a JavaSchemaRDD. +parquetFile = sqlCtx.parquetFile("people.parquet") + +//Parquet files can also be registered as tables and then used in SQL statements. +parquetFile.registerAsTable("parquetFile"); +teenagers = sqlCtx.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19") + {% endhighlight %}
@@ -318,4 +386,24 @@ Row[] results = hiveCtx.hql("FROM src SELECT key, value").collect(); +
+ +When working with Hive one must construct a `HiveContext`, which inherits from `SQLContext`, and +adds support for finding tables in in the MetaStore and writing queries using HiveQL. In addition to +the `sql` method a `HiveContext` also provides an `hql` methods, which allows queries to be +expressed in HiveQL. + +{% highlight python %} + +from pyspark.context import HiveContext +hiveCtx = HiveContext(sqlCtx) + +hiveCtx.hql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") +hiveCtx.hql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src") + +// Queries are expressed in HiveQL. +results = hiveCtx.hql("FROM src SELECT key, value").collect() + +{% endhighlight %} +