-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
49 lines (37 loc) · 1.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import warnings
warnings.filterwarnings('ignore')
import os
import json
import yaml
from torch.utils.data import Dataset, DataLoader
from src.dataset import *
from src.utils import *
from src.evaluation import *
from src.train import *
from config import *
def main():
args = get_config()
args = args_dict(args)
print(args.ex_name)
print(vars(args))
seed_init()
if args.action == 'train':
kwargs = {"matching": args.dataset['matching'], "sample_rate":16000}
length = int(args.setting['segment'] * args.setting['sample_rate'])
stride = int(args.setting['stride'] * args.setting['sample_rate'])
train_dataset = TrainDataset(args.dataset['train'], length=length, stride=stride, valid=args.dataset['val'], pad=args.setting['pad'], **kwargs)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker)
val_dataset = ValDataset(args.dataset['train'], valid=args.dataset['val'], **kwargs)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.num_worker)
data_loader = {'train':train_loader, 'val':val_loader}
trainer = Trainer(data_loader, args)
trainer.train()
tester = Tester(args)
print('---Test score---')
tester.test()
else:
tester = Tester(args)
print('---Test score---')
tester.test()
if __name__ == "__main__":
main()