You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I was able create a conda environment with: conda create --name papi --file ./papi/papi_spec-file.txt
But, I am running into a number of different errors. Sorry to combine then into one issue, but it seems like these cmds may have worked in the past, but not anymore.
If I run: python src/inference.py --inputfile ./examples/tracts.txt --ind 1 --tracefile ./example.trace --outfile OUTFILE --typ bin
I get the output:
Running inference in pymc mode
Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization 'Powell'.
logp = -249.34: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 46/46 [00:00<00:00, 3164.68it/s]
Only 100 samples in chain.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Initializing NUTS failed. Falling back to elementwise auto-assignment.
Multiprocess sampling (4 chains in 4 jobs)
CompoundStep
Slice: [t2]
Slice: [t1]
Slice: [p2]
Slice: [p1]
Sampling 4 chains, 0 divergences: 100%|███████████████████████████████████████████████████████████████████| 2400/2400 [00:05<00:00, 475.56draws/s]
The number of effective samples is smaller than 25% for some parameters.
Traceback (most recent call last):
File "src/inference.py", line 310, in
trace['t1']=trace['t1']-1
TypeError: 'MultiTrace' object does not support item assignment
If I run python src/inference.py --inputfile ./examples/tracts.txt --ind 1 --tracefile ./example.trace --outfile OUTFILE --typ full
I get the output:
Running inference in pymc mode
Traceback (most recent call last):
File "src/inference.py", line 301, in
pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/distributions/distribution.py", line 47, in new
return model.Var(name, dist, data, total_size)
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/model.py", line 940, in Var
var = MultiObservedRV(name=name, data=data, distribution=dist,
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/model.py", line 1543, in init
self.logp_elemwiset = distribution.logp(**self.data)
File "src/inference.py", line 301, in
pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/theano/gof/op.py", line 674, in call
required = thunk()
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/theano/gof/op.py", line 892, in rval
r = p(n, [x[0] for x in i], o)
File "src/inference.py", line 49, in perform
logl = self.likelihood(theta,self.data)
TypeError: lik_func() missing 1 required positional argument: 'tau'
Running inference in pymc mode
Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization 'Powell'.
logp = 141.33: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 136/136 [00:03<00:00, 36.25it/s]
Only 100 samples in chain.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Initializing NUTS failed. Falling back to elementwise auto-assignment.
Multiprocess sampling (4 chains in 4 jobs)
CompoundStep
Slice: [t2]
Slice: [t1]
Slice: [p2]
Slice: [p1]
Sampling 4 chains, 0 divergences: 100%|████████████████████████████████████████████████████████████████████| 2400/2400 [09:25<00:00, 4.25draws/s]
The rhat statistic is larger than 1.4 for some parameters. The sampler did not converge.
The number of effective samples is smaller than 10% for some parameters.
Traceback (most recent call last):
File "src/inference.py", line 310, in
trace['t1']=trace['t1']-1
TypeError: 'MultiTrace' object does not support item assignment
The text was updated successfully, but these errors were encountered:
I'm trying to get PAPI running on the examples:
I was able create a conda environment with:
conda create --name papi --file ./papi/papi_spec-file.txt
But, I am running into a number of different errors. Sorry to combine then into one issue, but it seems like these cmds may have worked in the past, but not anymore.
If I run:
python src/inference.py --inputfile ./examples/tracts.txt --ind 1 --tracefile ./example.trace --outfile OUTFILE --typ bin
I get the output:
Running inference in pymc mode
Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization 'Powell'.
logp = -249.34: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 46/46 [00:00<00:00, 3164.68it/s]
Only 100 samples in chain.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Initializing NUTS failed. Falling back to elementwise auto-assignment.
Multiprocess sampling (4 chains in 4 jobs)
CompoundStep
If I run
python src/inference.py --inputfile ./examples/tracts.txt --ind 1 --tracefile ./example.trace --outfile OUTFILE --typ full
I get the output:
Running inference in pymc mode
Traceback (most recent call last):
File "src/inference.py", line 301, in
pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/distributions/distribution.py", line 47, in new
return model.Var(name, dist, data, total_size)
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/model.py", line 940, in Var
var = MultiObservedRV(name=name, data=data, distribution=dist,
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/pymc3/model.py", line 1543, in init
self.logp_elemwiset = distribution.logp(**self.data)
File "src/inference.py", line 301, in
pm.DensityDist('likelihood', lambda v: logl(v), observed={'v': theta})
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/theano/gof/op.py", line 674, in call
required = thunk()
File "/home/kele/mambaforge/envs/papi/lib/python3.8/site-packages/theano/gof/op.py", line 892, in rval
r = p(n, [x[0] for x in i], o)
File "src/inference.py", line 49, in perform
logl = self.likelihood(theta,self.data)
TypeError: lik_func() missing 1 required positional argument: 'tau'
and with:
python src/inference.py --inputfile ./examples/tracts.txt --ind 1 --tracefile ./example.trace --outfile OUTFILE --typ mrkv
Running inference in pymc mode
Warning: gradient not available.(E.g. vars contains discrete variables). MAP estimates may not be accurate for the default parameters. Defaulting to non-gradient minimization 'Powell'.
logp = 141.33: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 136/136 [00:03<00:00, 36.25it/s]
Only 100 samples in chain.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Initializing NUTS failed. Falling back to elementwise auto-assignment.
Multiprocess sampling (4 chains in 4 jobs)
CompoundStep
The text was updated successfully, but these errors were encountered: