-
Notifications
You must be signed in to change notification settings - Fork 25
/
real_estate.py
88 lines (52 loc) · 2.11 KB
/
real_estate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
print('Real estate regression')
from hack import hack
hack()
from keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
print(train_data.shape)
print(test_data.shape)
# print(train_targets.shape)
import numpy as np
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
from keras import models
from keras import layers
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
# run k-fold because the data set is small
# we would then print the performance over epochs
# determine when model starts overfitting
# and then perform a regular run (see below)
# k = 4
# num_val_samples = len(train_data) // k
# num_epochs = 200
# all_scores = []
# for i in range(k):
# print('processing fold: ', i)
# val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
# val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
# partial_train_data = np.concatenate([train_data[:i * num_val_samples],
# train_data[(i + 1) * num_val_samples:]], axis=0)
# partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],
# train_targets[(i + 1) * num_val_samples:]], axis=0)
# model = build_model()
# model.fit(partial_train_data, partial_train_targets,
# epochs=num_epochs, batch_size=1, verbose=0)
# val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
# all_scores.append(val_mae)
# print(all_scores)
# graph output to see when overfitting starts
model = build_model()
model.fit(train_data, train_targets,
epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
print('Mean attribute error: $', test_mae_score.round(3) * 1000)