-
Notifications
You must be signed in to change notification settings - Fork 25
/
news.py
113 lines (72 loc) · 2.76 KB
/
news.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
print('Newswire classification')
from hack import hack
hack()
from keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
print('train data: ' + str(len(train_data)))
print('test data: ' + str(len(test_data)))
print(train_data[10])
# -- if you want to see inside the train_data, here's an example:
# word_index = reuters.get_word_index()
# reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
# print(decoded_newswire)
import numpy as np
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# create a one-hot (categorical) encoding
def to_one_hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results
one_hot_train_lables = to_one_hot(train_labels)
one_hot_test_labels = to_one_hot(test_labels)
# or more-simply use the pre-built keras method
from keras.utils.np_utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(46, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(46, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=516,
validation_data=(x_val, y_val))
import matplotlib.pyplot as plt # pylint disable=E0401
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.clf()
accuracy = history.history['acc']
val_acc = history.history['val_acc']
plt.plot(epochs, accuracy, 'bo', label='Accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()