-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
60 lines (46 loc) · 1.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import math
import torch
import re
import torch.nn as nn
import numpy as np
# from skimage.measure.simple_metrics import compare_psnr
import skimage.metrics.simple_metrics as compare_psnr
import os
import glob
def findLastCheckpoint(save_dir):
file_list = glob.glob(os.path.join(save_dir, '*epoch*.pth'))
if file_list:
epochs_exist = []
for file_ in file_list:
result = re.findall(".*epoch(.*).pth.*", file_)
epochs_exist.append(int(result[0]))
initial_epoch = max(epochs_exist)
else:
initial_epoch = 0
return initial_epoch
def batch_PSNR(img, imclean, data_range):
Img = img.data.cpu().numpy().astype(np.float32)
Iclean = imclean.data.cpu().numpy().astype(np.float32)
PSNR = 0
for i in range(Img.shape[0]):
PSNR += compare_psnr(Iclean[i,:,:,:], Img[i,:,:,:], data_range=data_range)
return (PSNR/Img.shape[0])
def normalize(data):
return data / 255.
def is_image(img_name):
if img_name.endswith(".jpg") or img_name.endswith(".bmp") or img_name.endswith(".png"):
return True
else:
return False
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
if __name__ == '__main__':
a = [1]
b = a
b[0] = 3
print(b)
print(a)