forked from TencentARC/LLaMA-Pro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
87 lines (75 loc) · 3.36 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import torch
import sys
import html
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
model_name_or_path = 'TencentARC/LLaMA-Pro-8B-Instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
model.half().cuda()
def convert_message(message):
message_text = ""
if message["content"] is None and message["role"] == "assistant":
message_text += "<|assistant|>\n" # final msg
elif message["role"] == "system":
message_text += "<|system|>\n" + message["content"].strip() + "\n"
elif message["role"] == "user":
message_text += "<|user|>\n" + message["content"].strip() + "\n"
elif message["role"] == "assistant":
message_text += "<|assistant|>\n" + message["content"].strip() + "\n"
else:
raise ValueError("Invalid role: {}".format(message["role"]))
# gradio cleaning - it converts stuff to html entities
# we would need special handling for where we want to keep the html...
message_text = html.unescape(message_text)
# it also converts newlines to <br>, undo this.
message_text = message_text.replace("<br>", "\n")
return message_text
def convert_history(chat_history, max_input_length=1024):
history_text = ""
idx = len(chat_history) - 1
# add messages in reverse order until we hit max_input_length
while len(tokenizer(history_text).input_ids) < max_input_length and idx >= 0:
user_message, chatbot_message = chat_history[idx]
user_message = convert_message({"role": "user", "content": user_message})
chatbot_message = convert_message({"role": "assistant", "content": chatbot_message})
history_text = user_message + chatbot_message + history_text
idx = idx - 1
# if nothing was added, add <|assistant|> to start generation.
if history_text == "":
history_text = "<|assistant|>\n"
return history_text
@torch.inference_mode()
def instruct(instruction, max_token_output=1024):
input_text = instruction
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
input_ids = tokenizer(input_text, return_tensors='pt', truncation=False)
input_ids["input_ids"] = input_ids["input_ids"].cuda()
input_ids["attention_mask"] = input_ids["attention_mask"].cuda()
generation_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=max_token_output, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
with gr.Blocks() as demo:
# chatbot-style model
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot([], elem_id="chatbot")
msg = gr.Textbox()
clear = gr.Button("Clear")
# fn to add user message to history
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
prompt = convert_history(history)
streaming_out = instruct(prompt)
history[-1][1] = ""
for new_token in streaming_out:
history[-1][1] += new_token
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue().launch(share=True)