forked from Stonepia/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optim.cpp
526 lines (438 loc) · 16.7 KB
/
optim.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/torch.h>
#include <test/cpp/api/optim_baseline.h>
#include <test/cpp/api/support.h>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <random>
#include <vector>
using namespace torch::nn;
using namespace torch::optim;
template <typename OptimizerClass, typename Options>
bool test_optimizer_xor(Options options) {
torch::manual_seed(0);
Sequential model(
Linear(2, 8),
Functional(torch::sigmoid),
Linear(8, 1),
Functional(torch::sigmoid));
const int64_t kBatchSize = 200;
const int64_t kMaximumNumberOfEpochs = 3000;
OptimizerClass optimizer(model->parameters(), options);
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
auto inputs = torch::empty({kBatchSize, 2});
auto labels = torch::empty({kBatchSize});
for (const auto i : c10::irange(kBatchSize)) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
inputs.set_requires_grad(true);
auto step = [&](OptimizerClass& optimizer,
Sequential model,
torch::Tensor inputs,
torch::Tensor labels) {
auto closure = [&]() {
optimizer.zero_grad();
auto x = model->forward(inputs);
auto loss = torch::binary_cross_entropy(x, labels);
loss.backward();
return loss;
};
return optimizer.step(closure);
};
torch::Tensor loss = step(optimizer, model, inputs, labels);
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,bugprone-narrowing-conversions)
running_loss = running_loss * 0.99 + loss.item<float>() * 0.01;
if (epoch > kMaximumNumberOfEpochs) {
std::cout << "Loss is too high after epoch " << epoch << ": "
<< running_loss << std::endl;
return false;
}
epoch++;
}
return true;
}
template <typename Parameters>
void assign_parameter(
const Parameters& parameters,
const char* name,
torch::Tensor new_tensor) {
auto parameter = parameters[name];
parameter.set_requires_grad(false);
parameter.flatten().copy_(new_tensor);
parameter.set_requires_grad(true);
}
template <typename OptimizerClass, typename Options>
void check_exact_values(
Options options,
std::vector<std::vector<torch::Tensor>> expected_parameters) {
const size_t kIterations = 1001;
const size_t kSampleEvery = 100;
torch::manual_seed(0);
Sequential model(
Linear(2, 3),
Functional(torch::sigmoid),
Linear(3, 1),
Functional(torch::sigmoid));
model->to(torch::kFloat64);
// Use exact input values because matching random values is hard.
auto parameters = model->named_parameters();
assign_parameter(
parameters,
"0.weight",
torch::tensor(
{-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976},
torch::kFloat64));
assign_parameter(
parameters,
"0.bias",
torch::tensor({-0.1085, -0.2979, 0.6892}, torch::kFloat64));
assign_parameter(
parameters,
"2.weight",
torch::tensor({-0.0508, -0.3941, -0.2843}, torch::kFloat64));
assign_parameter(
parameters, "2.bias", torch::tensor({-0.0711}, torch::kFloat64));
auto optimizer = OptimizerClass(parameters.values(), options);
torch::Tensor input =
torch::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, torch::kFloat64)
.reshape({3, 2});
for (const auto i : c10::irange(kIterations)) {
optimizer.zero_grad();
auto output = model->forward(input);
auto loss = output.sum();
loss.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
if (i % kSampleEvery == 0) {
ASSERT_TRUE(
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
for (const auto p : c10::irange(parameters.size())) {
ASSERT_TRUE(parameters[p]->defined());
// Always compare using double dtype, regardless of the original dtype
// of the tensors
auto computed = parameters[p]->flatten().to(torch::kFloat64);
auto expected =
expected_parameters.at(i / kSampleEvery).at(p).to(torch::kFloat64);
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/5e-4)) {
std::cout << "Iteration " << i << ": " << computed
<< " != " << expected << " (parameter " << p << ")"
<< std::endl;
ASSERT_TRUE(false);
}
}
}
}
}
TEST(OptimTest, OptimizerAccessors) {
auto options = AdagradOptions(1.0);
std::vector<torch::Tensor> params;
for (const auto i : c10::irange(3)) {
(void)i; // Suppress unused variable warning
params.push_back(torch::randn(10));
}
auto optimizer = Adagrad(params, options);
// test for defaults() method with non-const reference
auto& options_ = static_cast<AdagradOptions&>(optimizer.defaults());
ASSERT_TRUE(options == options_);
// test for param_groups() with non-const reference return
auto& params_groups = optimizer.param_groups();
// NOLINTNEXTLINE(modernize-use-emplace)
params_groups.push_back(OptimizerParamGroup(params));
auto& params_1 = params_groups[1].params();
for (const auto i : c10::irange(params_1.size())) {
torch::equal(params[i], params_1[i]);
}
// test for add_param_group() when one or more params existing in another
// param_group are passed in the new param group to be added
ASSERT_THROWS_WITH(
optimizer.add_param_group(OptimizerParamGroup(params)),
"some parameters appear in more than one parameter group");
// test for state() with non-const reference return
auto& state_ = static_cast<AdagradParamState&>(
*(optimizer
.state()[c10::guts::to_string(params_1[0].unsafeGetTensorImpl())]));
state_.step(state_.step() + 1);
const auto& optimizer_ = Adagrad(params, options);
optimizer_.defaults();
// test for param_groups() with const reference return
(void)optimizer_.param_groups();
// test for state() with const reference return
optimizer_.state();
}
#define OLD_INTERFACE_WARNING_CHECK(func) \
{ \
torch::test::WarningCapture warnings; \
func; \
ASSERT_EQ( \
torch::test::count_substr_occurrences( \
warnings.str(), "will be removed"), \
1); \
}
struct MyOptimizerOptions
: public OptimizerCloneableOptions<MyOptimizerOptions> {
MyOptimizerOptions(double lr = 1.0) : lr_(lr){};
TORCH_ARG(double, lr) = 1.0;
};
TEST(OptimTest, OldInterface) {
struct MyOptimizer : Optimizer {
using Optimizer::Optimizer;
torch::Tensor step(LossClosure closure = nullptr) override {
return {};
}
explicit MyOptimizer(
std::vector<at::Tensor> params,
MyOptimizerOptions defaults = {})
: // NOLINTNEXTLINE(performance-move-const-arg)
Optimizer(
{std::move(OptimizerParamGroup(params))},
std::make_unique<MyOptimizerOptions>(defaults)) {}
};
std::vector<torch::Tensor> parameters = {
torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})};
{
MyOptimizer optimizer(parameters);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t size;
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
ASSERT_EQ(size, parameters.size());
}
{
std::vector<at::Tensor> params;
MyOptimizer optimizer(params);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t size;
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
ASSERT_EQ(size, 0);
OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
ASSERT_EQ(size, parameters.size());
std::vector<torch::Tensor> params_;
OLD_INTERFACE_WARNING_CHECK(params_ = optimizer.parameters());
for (const auto p : c10::irange(size)) {
ASSERT_TRUE(params_[p].allclose(parameters[p]));
}
}
{
Linear linear(3, 4);
MyOptimizer optimizer(linear->parameters());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t size;
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
ASSERT_EQ(size, linear->parameters().size());
}
}
TEST(OptimTest, XORConvergence_SGD) {
ASSERT_TRUE(test_optimizer_xor<SGD>(
SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_LBFGS) {
ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0)));
ASSERT_TRUE(test_optimizer_xor<LBFGS>(
LBFGSOptions(1.0).line_search_fn("strong_wolfe")));
}
TEST(OptimTest, XORConvergence_Adagrad) {
ASSERT_TRUE(test_optimizer_xor<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)));
}
TEST(OptimTest, XORConvergence_RMSprop) {
ASSERT_TRUE(test_optimizer_xor<RMSprop>(RMSpropOptions(0.1).centered(true)));
}
TEST(OptimTest, XORConvergence_RMSpropWithMomentum) {
ASSERT_TRUE(test_optimizer_xor<RMSprop>(
RMSpropOptions(0.1).momentum(0.9).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_Adam) {
ASSERT_TRUE(test_optimizer_xor<Adam>(AdamOptions(0.1).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_AdamWithAmsgrad) {
ASSERT_TRUE(test_optimizer_xor<Adam>(
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)));
}
TEST(OptimTest, ProducesPyTorchValues_Adam) {
check_exact_values<Adam>(AdamOptions(1.0), expected_parameters::Adam());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecay) {
check_exact_values<Adam>(
AdamOptions(1.0).weight_decay(1e-2),
expected_parameters::Adam_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecayAndAMSGrad) {
check_exact_values<Adam>(
AdamOptions(1.0).weight_decay(1e-6).amsgrad(true),
expected_parameters::Adam_with_weight_decay_and_amsgrad());
}
TEST(OptimTest, XORConvergence_AdamW) {
ASSERT_TRUE(test_optimizer_xor<AdamW>(AdamWOptions(0.1)));
}
TEST(OptimTest, XORConvergence_AdamWWithAmsgrad) {
ASSERT_TRUE(test_optimizer_xor<AdamW>(AdamWOptions(0.1).amsgrad(true)));
}
TEST(OptimTest, ProducesPyTorchValues_AdamW) {
check_exact_values<AdamW>(AdamWOptions(1.0), expected_parameters::AdamW());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWWithoutWeightDecay) {
check_exact_values<AdamW>(
AdamWOptions(1.0).weight_decay(0),
expected_parameters::AdamW_without_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWWithAMSGrad) {
check_exact_values<AdamW>(
AdamWOptions(1.0).amsgrad(true),
expected_parameters::AdamW_with_amsgrad());
}
TEST(OptimTest, ProducesPyTorchValues_Adagrad) {
check_exact_values<Adagrad>(
AdagradOptions(1.0), expected_parameters::Adagrad());
}
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecay) {
check_exact_values<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-2),
expected_parameters::Adagrad_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecayAndLRDecay) {
check_exact_values<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
expected_parameters::Adagrad_with_weight_decay_and_lr_decay());
}
TEST(OptimTest, ProducesPyTorchValues_RMSprop) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1), expected_parameters::RMSprop());
}
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecay) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-2),
expected_parameters::RMSprop_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecayAndCentered) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-6).centered(true),
expected_parameters::RMSprop_with_weight_decay_and_centered());
}
TEST(
OptimTest,
ProducesPyTorchValues_RMSpropWithWeightDecayAndCenteredAndMomentum) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-6).centered(true).momentum(0.9),
expected_parameters::
RMSprop_with_weight_decay_and_centered_and_momentum());
}
TEST(OptimTest, ProducesPyTorchValues_SGD) {
check_exact_values<SGD>(SGDOptions(0.1), expected_parameters::SGD());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecay) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-2),
expected_parameters::SGD_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndMomentum) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-2).momentum(0.9),
expected_parameters::SGD_with_weight_decay_and_momentum());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndNesterovMomentum) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-6).momentum(0.9).nesterov(true),
expected_parameters::SGD_with_weight_decay_and_nesterov_momentum());
}
TEST(OptimTest, ProducesPyTorchValues_LBFGS) {
check_exact_values<LBFGS>(LBFGSOptions(1.0), expected_parameters::LBFGS());
}
TEST(OptimTest, ProducesPyTorchValues_LBFGS_with_line_search) {
check_exact_values<LBFGS>(
LBFGSOptions(1.0).line_search_fn("strong_wolfe"),
expected_parameters::LBFGS_with_line_search());
}
TEST(OptimTest, ZeroGrad) {
torch::manual_seed(0);
Linear model(2, 8);
SGD optimizer(model->parameters(), 0.1);
for (const auto& parameter : model->parameters()) {
ASSERT_FALSE(parameter.grad().defined());
}
auto output = model->forward(torch::ones({5, 2}));
auto loss = output.sum();
loss.backward();
for (const auto& parameter : model->parameters()) {
ASSERT_TRUE(parameter.grad().defined());
ASSERT_GT(parameter.grad().sum().item<float>(), 0);
}
optimizer.zero_grad();
for (const auto& parameter : model->parameters()) {
ASSERT_FALSE(parameter.grad().defined());
}
}
TEST(OptimTest, ExternalVectorOfParameters) {
torch::manual_seed(0);
std::vector<torch::Tensor> parameters = {
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
std::vector<torch::Tensor> original_parameters = {
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
// Set all gradients to one
for (auto& parameter : parameters) {
parameter.mutable_grad() = torch::ones_like(parameter);
}
SGD optimizer(parameters, 1.0);
optimizer.step();
ASSERT_TRUE(parameters[0].allclose(original_parameters[0] - 1.0));
ASSERT_TRUE(parameters[1].allclose(original_parameters[1] - 1.0));
ASSERT_TRUE(parameters[2].allclose(original_parameters[2] - 1.0));
}
TEST(OptimTest, AddParameter_LBFGS) {
torch::manual_seed(0);
std::vector<torch::Tensor> parameters = {torch::randn({5, 5})};
std::vector<torch::Tensor> original_parameters = {parameters[0].clone()};
// Set all gradients to one
for (auto& parameter : parameters) {
parameter.mutable_grad() = torch::ones_like(parameter);
}
LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0);
OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
optimizer.step([]() { return torch::tensor(1); });
// REQUIRE this doesn't throw
}
// Check whether the learning rate of the parameter groups in the optimizer are
// the same as the expected learning rates given in the epoch:learning rate map
void check_lr_change(
Optimizer& optimizer,
LRScheduler& lr_scheduler,
std::map<unsigned, double> expected_epoch_lrs) {
// Find maximum epoch in map
unsigned kIterations = std::max_element(
expected_epoch_lrs.begin(),
expected_epoch_lrs.end(),
[](const std::pair<unsigned, double>& a,
const std::pair<unsigned, double>& b) -> bool {
return a.second > b.second;
})
->first;
for (unsigned i = 0; i <= kIterations; i++) {
const auto epoch_iter = expected_epoch_lrs.find(i);
if (epoch_iter != expected_epoch_lrs.end()) {
// Compare the similarity of the two floating point learning rates
ASSERT_TRUE(
fabs(
epoch_iter->second -
optimizer.param_groups()[0].options().get_lr()) <
std::numeric_limits<double>::epsilon());
}
optimizer.step();
lr_scheduler.step();
}
}
TEST(OptimTest, CheckLRChange_StepLR_Adam) {
torch::Tensor parameters = torch::zeros({1});
auto optimizer = Adam({parameters}, AdamOptions().lr(1e-3));
const unsigned step_size = 20;
const double gamma = 0.5;
StepLR step_lr_scheduler(optimizer, step_size, gamma);
// The learning rate should have halved at epoch 20
const std::map<unsigned, double> expected_epoch_lrs = {{1, 1e-3}, {25, 5e-4}};
check_lr_change(optimizer, step_lr_scheduler, expected_epoch_lrs);
}