forked from ZJULearning/pixel_link
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pixel_link_on_any_image.py
151 lines (117 loc) · 6.12 KB
/
test_pixel_link_on_any_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#encoding = utf-8
import numpy as np
import math
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
from tensorflow.contrib.training.python.training import evaluation
from datasets import dataset_factory
from preprocessing import ssd_vgg_preprocessing
from tf_extended import metrics as tfe_metrics
import util
import cv2
import pixel_link
from nets import pixel_link_symbol
slim = tf.contrib.slim
import config
# =========================================================================== #
# Checkpoint and running Flags
# =========================================================================== #
tf.app.flags.DEFINE_string('checkpoint_path', None,
'the path of pretrained model to be used. If there are checkpoints\
in train_dir, this config will be ignored.')
tf.app.flags.DEFINE_float('gpu_memory_fraction', -1,
'the gpu memory fraction to be used. If less than 0, allow_growth = True is used.')
# =========================================================================== #
# Dataset Flags.
# =========================================================================== #
tf.app.flags.DEFINE_string(
'dataset_dir', 'None',
'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_integer('eval_image_width', None, 'resized image width for inference')
tf.app.flags.DEFINE_integer('eval_image_height', None, 'resized image height for inference')
tf.app.flags.DEFINE_float('pixel_conf_threshold', None, 'threshold on the pixel confidence')
tf.app.flags.DEFINE_float('link_conf_threshold', None, 'threshold on the link confidence')
tf.app.flags.DEFINE_bool('using_moving_average', True,
'Whether to use ExponentionalMovingAverage')
tf.app.flags.DEFINE_float('moving_average_decay', 0.9999,
'The decay rate of ExponentionalMovingAverage')
FLAGS = tf.app.flags.FLAGS
def config_initialization():
# image shape and feature layers shape inference
image_shape = (FLAGS.eval_image_height, FLAGS.eval_image_width)
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.DEBUG)
config.init_config(image_shape,
batch_size = 1,
pixel_conf_threshold = FLAGS.pixel_conf_threshold,
link_conf_threshold = FLAGS.link_conf_threshold,
num_gpus = 1,
)
def test():
checkpoint_dir = util.io.get_dir(FLAGS.checkpoint_path)
global_step = slim.get_or_create_global_step()
with tf.name_scope('evaluation_%dx%d'%(FLAGS.eval_image_height, FLAGS.eval_image_width)):
with tf.variable_scope(tf.get_variable_scope(), reuse = False):
image = tf.placeholder(dtype=tf.int32, shape = [None, None, 3])
image_shape = tf.placeholder(dtype = tf.int32, shape = [3, ])
processed_image, _, _, _, _ = ssd_vgg_preprocessing.preprocess_image(image, None, None, None, None,
out_shape = config.image_shape,
data_format = config.data_format,
is_training = False)
b_image = tf.expand_dims(processed_image, axis = 0)
# build model and loss
net = pixel_link_symbol.PixelLinkNet(b_image, is_training = False)
masks = pixel_link.tf_decode_score_map_to_mask_in_batch(
net.pixel_pos_scores, net.link_pos_scores)
sess_config = tf.ConfigProto(log_device_placement = False, allow_soft_placement = True)
if FLAGS.gpu_memory_fraction < 0:
sess_config.gpu_options.allow_growth = True
elif FLAGS.gpu_memory_fraction > 0:
sess_config.gpu_options.per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction;
# Variables to restore: moving avg. or normal weights.
if FLAGS.using_moving_average:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay)
variables_to_restore = variable_averages.variables_to_restore(
tf.trainable_variables())
variables_to_restore[global_step.op.name] = global_step
else:
variables_to_restore = slim.get_variables_to_restore()
saver = tf.train.Saver(var_list = variables_to_restore)
with tf.Session() as sess:
saver.restore(sess, util.tf.get_latest_ckpt(FLAGS.checkpoint_path))
files = util.io.ls(FLAGS.dataset_dir)
for image_name in files:
file_path = util.io.join_path(FLAGS.dataset_dir, image_name)
image_data = util.img.imread(file_path)
link_scores, pixel_scores, mask_vals = sess.run(
[net.link_pos_scores, net.pixel_pos_scores, masks],
feed_dict = {image: image_data})
h, w, _ =image_data.shape
def resize(img):
return util.img.resize(img, size = (w, h),
interpolation = cv2.INTER_NEAREST)
def get_bboxes(mask):
return pixel_link.mask_to_bboxes(mask, image_data.shape)
def draw_bboxes(img, bboxes, color):
for bbox in bboxes:
points = np.reshape(bbox, [4, 2])
cnts = util.img.points_to_contours(points)
util.img.draw_contours(img, contours = cnts,
idx = -1, color = color, border_width = 1)
image_idx = 0
pixel_score = pixel_scores[image_idx, ...]
mask = mask_vals[image_idx, ...]
bboxes_det = get_bboxes(mask)
mask = resize(mask)
pixel_score = resize(pixel_score)
draw_bboxes(image_data, bboxes_det, util.img.COLOR_RGB_RED)
# print util.sit(pixel_score)
# print util.sit(mask)
print util.sit(image_data)
def main(_):
dataset = config_initialization()
test()
if __name__ == '__main__':
tf.app.run()