-
Notifications
You must be signed in to change notification settings - Fork 0
/
stack.go
125 lines (104 loc) · 2.85 KB
/
stack.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
package collections
import (
"fmt"
"sync"
)
// Stack implements a LIFO data structure. It is not thread-safe.
type Stack[T any] struct {
items []T
}
// NewStack returns a new stack with the given initial items.
func NewStack[T any](values ...T) *Stack[T] {
return &Stack[T]{items: values}
}
// Push adds an item to the top of the stack.
func (s *Stack[T]) Push(item T) {
s.items = append(s.items, item)
}
// Pop removes and returns the item at the top of the stack. If the stack is
// empty, an error is returned.
func (s *Stack[T]) Pop() (T, error) {
var zero T
if len(s.items) == 0 {
return zero, ErrEmptyStack
}
item := s.items[len(s.items)-1]
s.items = s.items[:len(s.items)-1]
return item, nil
}
// Peek returns the item at the top of the stack without removing it. If the
// stack is empty, an error is returned.
func (s *Stack[T]) Peek() (T, error) {
var zero T
if len(s.items) == 0 {
return zero, ErrEmptyStack
}
return s.items[len(s.items)-1], nil
}
// IsEmpty returns true if the stack is empty.
func (s *Stack[T]) IsEmpty() bool {
return len(s.items) == 0
}
// Size returns the number of items in the stack.
func (s *Stack[T]) Size() int {
return len(s.items)
}
// String returns a string representation of the stack.
func (s *Stack[T]) String() string {
return fmt.Sprintf("%v", s.items)
}
// ConcurrentStack implements a LIFO data structure. It is thread-safe.
type ConcurrentStack[T any] struct {
items []T
lock sync.RWMutex
}
// NewConcurrentStack returns a new stack with the given initial items.
func NewConcurrentStack[T any](values ...T) *ConcurrentStack[T] {
return &ConcurrentStack[T]{items: values}
}
// Push adds an item to the top of the stack.
func (s *ConcurrentStack[T]) Push(item T) {
s.lock.Lock()
defer s.lock.Unlock()
s.items = append(s.items, item)
}
// Pop removes and returns the item at the top of the stack. If the stack is
func (s *ConcurrentStack[T]) Pop() (T, error) {
s.lock.Lock()
defer s.lock.Unlock()
var zero T
if len(s.items) == 0 {
return zero, ErrEmptyStack
}
item := s.items[len(s.items)-1]
s.items = s.items[:len(s.items)-1]
return item, nil
}
// Peek returns the item at the top of the stack without removing it. If the
func (s *ConcurrentStack[T]) Peek() (T, error) {
s.lock.RLock()
defer s.lock.RUnlock()
var zero T
if len(s.items) == 0 {
return zero, ErrEmptyStack
}
return s.items[len(s.items)-1], nil
}
// IsEmpty returns true if the stack is empty.
func (s *ConcurrentStack[T]) IsEmpty() bool {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.items) == 0
}
// Size returns the number of items in the stack.
func (s *ConcurrentStack[T]) Size() int {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.items)
}
// String returns a string representation of the stack.
func (s *ConcurrentStack[T]) String() string {
s.lock.RLock()
defer s.lock.RUnlock()
return fmt.Sprintf("%v", s.items)
}