Skip to content

Latest commit

 

History

History
168 lines (125 loc) · 5.63 KB

releasing.md

File metadata and controls

168 lines (125 loc) · 5.63 KB

Releasing Kubeflow

Some preliminary instructions for how to cut a release.

Authenticate to GCP

If you're new to using GKE or are new to the release team, you'll need to authenticate to GCP first. Install the gcloud tool and then execute the following commands, substituting your Kubeflow release team account for [email protected] (if you aren't a member of [email protected], ask to be added):

gcloud config set account [email protected]
gcloud auth 

This will open your browser to authenticate you. Then you can proceed as follows:

gcloud config set project kubeflow-releasing
gcloud container clusters get-credentials kubeflow-releasing --zone us-central1-a --project kubeflow-releasing

Use this script to set up your context properly:

create_context.sh $(kubectl config current-context) kubeflow-releasing

Build TFJob operator

We build TFJob operator by running the E2E test workflow.

Look at the postsubmit dashboard to find the latest green postsubmit.

Check out that commit (in this example, we'll use 6214e560):

COMMIT="6214e560"
cd ${GIT_KUBEFLOW_TF_OPERATOR}
git checkout ${COMMIT}
cd test/workflows

Run the E2E test workflow using our release cluster

kubeflow/testing#42 will simplify this.

JOB_NAME="tf-operator-release"
JOB_TYPE=tf-operator-release
BUILD_NUMBER=$(uuidgen)
BUILD_NUMBER=${BUILD_NUMBER:0:4}
REPO_OWNER=kubeflow
REPO_NAME=tf-operator
ENV=releasing
DATE=`date +%Y%m%d`
PULL_BASE_SHA=${COMMIT:0:8}
VERSION_TAG="v${DATE}-${PULL_BASE_SHA}"

PROW_VAR="JOB_NAME=${JOB_NAME},JOB_TYPE=${JOB_TYPE},REPO_NAME=${REPO_NAME}"
PROW_VAR="${PROW_VAR},REPO_OWNER=${REPO_OWNER},BUILD_NUMBER=${BUILD_NUMBER}" 
PROW_VAR="${PROW_VAR},PULL_BASE_SHA=${PULL_BASE_SHA}" 

ks param set --env=${ENV} workflows namespace kubeflow-releasing
ks param set --env=${ENV} workflows name "${USER}-${JOB_NAME}-${PULL_BASE_SHA}-${BUILD_NUMBER}"
ks param set --env=${ENV} workflows prow_env "${PROW_VAR}"
ks param set --env=${ENV} workflows versionTag "${VERSION_TAG}"
ks apply ${ENV} -c workflows

You can monitor the workflow using the Argo UI. For our release cluster, we don't expose the Argo UI publicly, so you'll need to connect via kubectl port-forward:

kubectl -n kubeflow-releasing port-forward `kubectl -n kubeflow-releasing get pods --selector=app=argo-ui -o jsonpath='{.items[0].metadata.name}'` 8080:8001

kubeflow/testing#43 is tracking setup of IAP to make this easier.

Make sure the Argo workflow completes successfully. Check the junit files to make sure there were no actual test failures. The junit files will be in gs://kubeflow-releasing-artifacts.

Update all.jsonnet to point to the new image.

Build TF Serving Images

We build TF serving images using an argo workflow.

Look at the postsubmit dashboard to find the latest green postsubmit.

Check out that commit

COMMIT=<commit to build>
cd ${GIT_KUBEFLOW}
git checkout ${COMMIT}
cd releasing/releaser
PULL_BASE_SHA=${COMMIT:0:8}
DATE=`date +%Y%m%d`
VERSION_TAG="v${DATE}-${PULL_BASE_SHA}"
JOB_NAME="tf-serving-release"
JOB_TYPE=postsubmit
BUILD_NUMBER=$(uuidgen)
BUILD_NUMBER=${BUILD_NUMBER:0:4}
REPO_OWNER=kubeflow
REPO_NAME=kubeflow
ENV=releasing
ks param set --env=${ENV} workflows namespace kubeflow-releasing
ks param set --env=${ENV} workflows name "${USER}-${JOB_NAME}-${VERSION_TAG}"
ks param set --env=${ENV} workflows prow_env "JOB_NAME=${JOB_NAME},JOB_TYPE=${JOB_TYPE},PULL_BASE_SHA=${PULL_BASE_SHA},REPO_NAME=${REPO_NAME},REPO_OWNER=${REPO_OWNER},BUILD_NUMBER=${BUILD_NUMBER}"
ks param set --env=${ENV} workflows versionTag ${VERSION_TAG}
ks apply ${ENV} -c workflows

Build the Jupyter Images

We build the Jupyter using our E2E argo workflows.

Look at the postsubmit dashboard to find the latest green postsubmit.

Checkout that commit

COMMIT=<commit to build>
cd ${GIT_KUBEFLOW}
git checkout ${COMMIT}
cd components/tensorflow-notebook-image/releaser
PULL_BASE_SHA=${COMMIT:0:8}
DATE=`date +%Y%m%d`
VERSION_TAG="v${DATE}-${PULL_BASE_SHA}"
JOB_NAME="tensorflow-notebook-image-release"
JOB_TYPE=postsubmit
BUILD_NUMBER=$(uuidgen)
BUILD_NUMBER=${BUILD_NUMBER:0:4}
REPO_OWNER=kubeflow
REPO_NAME=kubeflow
ENV=releasing
ks param set --env=${ENV} workflows namespace kubeflow-releasing
ks param set --env=${ENV} workflows name "${USER}-${JOB_NAME}-${VERSION_TAG}"
ks param set --env=${ENV} workflows versionTag "${VERSION_TAG}"
ks param set --env=${ENV} workflows prow_env  \
  "JOB_NAME=${JOB_NAME},JOB_TYPE=${JOB_TYPE},PULL_BASE_SHA=${PULL_BASE_SHA},REPO_NAME=${REPO_NAME},REPO_OWNER=${REPO_OWNER},BUILD_NUMBER=${BUILD_NUMBER}"
ks apply ${ENV} -c workflows

Create a PR to update jupyterhub_spawner.py to point to the newly built Jupyter notebook images.

Update the ksonnet configs

Create a PR to update the ksonnet configs to use the latest images built in the previous steps.

Presubmit tests should verify that the ksonnet configs work.

Submit the PR.

Wait for a passing postsubmit of the submitted PR.

Tag the commit corresponding to the passing postsubmit with the appropriate tags for the release.