forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ml-package-versions.yml
266 lines (232 loc) · 7.15 KB
/
ml-package-versions.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
sklearn:
package_info:
pip_release: "scikit-learn"
install_dev: |
# This installs scikit-learn from the default branch
pip install git+https://github.com/scikit-learn/scikit-learn.git
models:
minimum: "0.20.3"
maximum: "0.23.2"
run: |
pytest tests/sklearn/test_sklearn_model_export.py --large
autologging:
minimum: "0.20.3"
maximum: "0.23.2"
requirements: ["matplotlib"]
run: |
pytest tests/sklearn/test_sklearn_training_session.py --large
pytest tests/sklearn/test_sklearn_autolog.py --large
pytorch:
package_info:
pip_release: "torch"
install_dev: |
pip install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
models:
minimum: "1.4.0"
maximum: "1.7.0"
requirements: ["torchvision", "scikit-learn"]
run: |
pytest tests/pytorch/test_pytorch_model_export.py --large
autologging:
minimum: "1.4.0"
maximum: "1.7.0"
requirements: ["torchvision", "pytorch-lightning", "scikit-learn"]
run: |
pytest tests/pytorch/test_pytorch_autolog.py --large
pytorch-lightning:
package_info:
pip_release: "pytorch-lightning"
install_dev: |
# This installs pytorch-lightning from the default branch
pip install git+https://github.com/PytorchLightning/pytorch-lightning.git
autologging:
minimum: "1.0.5"
maximum: "1.1.2"
requirements: ["torchvision", "scikit-learn"]
run: |
pytest tests/pytorch/test_pytorch_autolog.py --large
tensorflow:
package_info:
pip_release: "tensorflow"
install_dev: |
# Unpin `tf-nightly` once the following issue is addressed:
# https://github.com/tensorflow/tensorflow/issues/46429
pip install 'tf-nightly==2.5.0.dev20210112'
models:
minimum: "1.15.4"
maximum: "2.3.1"
requirements:
"< 2.2": ["h5py<3.0", "scikit-learn"]
run: |
python_code="
import tensorflow as tf
major_ver = tf.__version__.split('.')[0]
assert major_ver in ['1', '2']
print(major_ver)
"
tf_major_version=$(python -c "$python_code")
if [ "$tf_major_version" == "1" ]; then
pytest tests/tensorflow/test_tensorflow_model_export.py --large
else
pytest tests/tensorflow/test_tensorflow2_model_export.py --large
fi
autologging:
minimum: "1.15.4"
maximum: "2.3.1"
requirements:
"< 2.2": ["h5py<3.0"]
run: |
python_code="
import tensorflow as tf
major_ver = tf.__version__.split('.')[0]
assert major_ver in ['1', '2']
print(major_ver)
"
tf_major_version=$(python -c "$python_code")
if [ "$tf_major_version" == "1" ]; then
pytest tests/tensorflow_autolog/test_tensorflow_autolog.py --large
else
pytest tests/tensorflow_autolog/test_tensorflow2_autolog.py --large
fi
keras:
package_info:
pip_release: "keras"
install_dev: |
# In keras >= 2.4.0, `keras` simply redirects to `tensorflow.keras`:
# https://github.com/keras-team/keras#multi-backend-keras-and-tfkeras
# Unpin `tf-nightly` once the following issue is addressed:
# https://github.com/tensorflow/tensorflow/issues/46429
pip install 'tf-nightly==2.5.0.dev20210112' 'keras>=2.4.0'
models:
minimum: "2.2.4"
maximum: "2.4.3"
requirements:
"< 2.3.1": ["tensorflow==1.15.4", "h5py<3.0", "scikit-learn", "pyspark==2.4.0", "pyarrow"]
"== 2.3.1": ["tensorflow==2.2.1", "scikit-learn", "pyspark==2.4.0", "pyarrow"]
"> 2.3.1": ["tensorflow", "scikit-learn", "pyspark==2.4.0", "pyarrow"]
"== dev": ["scikit-learn", "pyspark==2.4.0", "pyarrow"]
run: |
pytest tests/keras/test_keras_model_export.py --large
autologging:
minimum: "2.2.4"
maximum: "2.4.3"
requirements:
"< 2.3.1": ["tensorflow==1.15.4", "h5py<3.0"]
# keras 2.3.1 is incompatible with tensorflow > 2.2.1 and causes the issue reported here:
# https://github.com/tensorflow/tensorflow/issues/38589
"== 2.3.1": ["tensorflow==2.2.1"]
"> 2.3.1, != dev": ["tensorflow"]
run: |
pytest --verbose tests/keras_autolog/test_keras_autolog.py --large
xgboost:
package_info:
pip_release: "xgboost"
install_dev: |
temp_dir=$(mktemp -d)
git clone --recursive https://github.com/dmlc/xgboost $temp_dir
cd $temp_dir/python-package
python setup.py install
models:
minimum: "0.90"
maximum: "1.2.1"
requirements: ["scikit-learn"]
run: |
pytest tests/xgboost/test_xgboost_model_export.py --large
autologging:
minimum: "0.90"
maximum: "1.2.1"
requirements: ["scikit-learn", "matplotlib"]
run: |
pytest tests/xgboost/test_xgboost_autolog.py --large
lightgbm:
package_info:
pip_release: "lightgbm"
install_dev: |
temp_dir=$(mktemp -d)
git clone --recursive https://github.com/microsoft/LightGBM.git $temp_dir
cd $temp_dir/python-package
python setup.py install
models:
minimum: "2.3.1"
maximum: "3.1.0"
requirements: ["scikit-learn"]
run: |
pytest tests/lightgbm/test_lightgbm_model_export.py --large
autologging:
minimum: "2.3.1"
maximum: "3.1.0"
requirements: ["scikit-learn", "matplotlib"]
run: |
pytest tests/lightgbm/test_lightgbm_autolog.py --large
gluon:
package_info:
pip_release: "mxnet"
install_dev: |
pip install --pre mxnet -f https://dist.mxnet.io/python/cpu
models:
minimum: "1.5.1"
maximum: "1.7.0.post1"
run: |
pytest tests/gluon/test_gluon_model_export.py --large
autologging:
minimum: "1.5.1"
maximum: "1.7.0.post1"
run: |
pytest tests/gluon_autolog/test_gluon_autolog.py --large
fastai-1.x:
package_info:
pip_release: "fastai"
models:
minimum: "1.0.60"
maximum: "1.0.61"
requirements: ["scikit-learn"]
run: |
pytest tests/fastai/test_fastai_model_export.py --large
autologging:
minimum: "1.0.60"
maximum: "1.0.61"
requirements: ["scikit-learn"]
run: |
pytest tests/fastai/test_fastai_autolog.py --large
onnx:
package_info:
pip_release: "onnx"
install_dev: |
sudo apt-get install protobuf-compiler libprotoc-dev
temp_dir=$(mktemp -d)
git clone https://github.com/onnx/onnx.git $temp_dir
cd $temp_dir
git submodule update --init --recursive
python setup.py install
models:
minimum: "1.5.0"
maximum: "1.8.0"
requirements: ["onnxruntime", "torch", "scikit-learn"]
run: |
pytest tests/onnx/test_onnx_model_export.py --large
spacy:
package_info:
pip_release: "spacy"
install_dev: |
pip install spacy-nightly
models:
minimum: "2.2.4"
maximum: "3.0.0"
requirements: ["scikit-learn"]
run: |
pytest tests/spacy/test_spacy_model_export.py --large
statsmodels:
package_info:
pip_release: "statsmodels"
install_dev: |
pip install git+https://github.com/statsmodels/statsmodels
models:
minimum: "0.11.1"
maximum: "0.12.2"
run: |
pytest tests/statsmodels/test_statsmodels_model_export.py --large
autologging:
minimum: "0.11.1"
maximum: "0.12.2"
run: |
pytest tests/statsmodels/test_statsmodels_autolog.py --large