Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[log] avoid reduntant logging #2493

Merged
merged 1 commit into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions wenet/paraformer/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,8 +290,12 @@ def forward_layers_checkpointed(self, xs: torch.Tensor,
for layer in self.encoders0:
xs, _, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
for layer in self.encoders:
xs, _, _, _ = ckpt.checkpoint(layer.__call__, xs, chunk_masks,
pos_emb, mask_pad, use_reentrant=False)
xs, _, _, _ = ckpt.checkpoint(layer.__call__,
xs,
chunk_masks,
pos_emb,
mask_pad,
use_reentrant=False)
return xs


Expand Down Expand Up @@ -480,8 +484,12 @@ def forward_layers_checkpointed(self, x: torch.Tensor,
if i == 0:
x, _, _, _ = layer(x, tgt_mask, memory, memory_mask)
else:
x, _, _, _ = ckpt.checkpoint(layer.__call__, x, tgt_mask,
memory, memory_mask, use_reentrant=False)
x, _, _, _ = ckpt.checkpoint(layer.__call__,
x,
tgt_mask,
memory,
memory_mask,
use_reentrant=False)
for layer in self.decoders3:
x = layer(x)
return x
14 changes: 11 additions & 3 deletions wenet/transformer/decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
"""Decoder definition."""
from typing import Dict, Tuple, List, Optional

import os
import torch
import torch.utils.checkpoint as ckpt
import logging
Expand Down Expand Up @@ -214,7 +215,11 @@ def forward_layers_checkpointed(self, x: torch.Tensor,
memory_mask: torch.Tensor) -> torch.Tensor:
for layer in self.decoders:
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
layer.__call__, x, tgt_mask, memory, memory_mask,
layer.__call__,
x,
tgt_mask,
memory,
memory_mask,
use_reentrant=False)
return x

Expand Down Expand Up @@ -278,14 +283,17 @@ def forward_one_step(
def tie_or_clone_weights(self, jit_mode: bool = True):
"""Tie or clone module weights (between word_emb and output_layer)
depending of whether we are using TorchScript or not"""
rank = int(os.environ.get('RANK', 0))
if not self.use_output_layer:
return
if jit_mode:
logging.info("clone emb.weight to output.weight")
if rank == 0:
logging.info("clone emb.weight to output.weight")
self.output_layer.weight = torch.nn.Parameter(
self.embed[0].weight.clone())
else:
logging.info("tie emb.weight with output.weight")
if rank == 0:
logging.info("tie emb.weight with output.weight")
self.output_layer.weight = self.embed[0].weight

if getattr(self.output_layer, "bias", None) is not None:
Expand Down
9 changes: 6 additions & 3 deletions wenet/transformer/encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,9 +190,12 @@ def forward_layers_checkpointed(self, xs: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
chunk_masks, pos_emb,
mask_pad, use_reentrant=False)
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__,
xs,
chunk_masks,
pos_emb,
mask_pad,
use_reentrant=False)
return xs

def forward_chunk(
Expand Down
20 changes: 13 additions & 7 deletions wenet/utils/checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,17 @@


def load_checkpoint(model: torch.nn.Module, path: str) -> dict:
logging.info('Checkpoint: loading from checkpoint %s' % path)
rank = int(os.environ.get('RANK', 0))
logging.info('[Rank {}] Checkpoint: loading from checkpoint {}'.format(
rank, path))
checkpoint = torch.load(path, map_location='cpu', mmap=True)
missing_keys, unexpected_keys = model.load_state_dict(checkpoint,
strict=False)
for key in missing_keys:
logging.info("missing tensor: {}".format(key))
for key in unexpected_keys:
logging.info("unexpected tensor: {}".format(key))
if rank == 0:
for key in missing_keys:
logging.info("missing tensor: {}".format(key))
for key in unexpected_keys:
logging.info("unexpected tensor: {}".format(key))
info_path = re.sub('.pt$', '.yaml', path)
configs = {}
if os.path.exists(info_path):
Expand All @@ -41,7 +44,9 @@ def load_checkpoint(model: torch.nn.Module, path: str) -> dict:


def save_state_dict_and_infos(state_dict, path: str, infos=None):
logging.info('Checkpoint: save to checkpoint %s' % path)
rank = int(os.environ.get('RANK', 0))
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(
rank, path))
torch.save(state_dict, path)
info_path = re.sub('.pt$', '.yaml', path)
if infos is None:
Expand All @@ -67,6 +72,7 @@ def save_checkpoint(model: torch.nn.Module, path: str, infos=None):


def filter_modules(model_state_dict, modules):
rank = int(os.environ.get('RANK', 0))
new_mods = []
incorrect_mods = []
mods_model = model_state_dict.keys()
Expand All @@ -75,7 +81,7 @@ def filter_modules(model_state_dict, modules):
new_mods += [mod]
else:
incorrect_mods += [mod]
if incorrect_mods:
if incorrect_mods and rank == 0:
logging.warning(
"module(s) %s don't match or (partially match) "
"available modules in model.",
Expand Down
4 changes: 3 additions & 1 deletion wenet/utils/init_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch

from wenet.finetune.lora.utils import mark_only_lora_as_trainable
Expand Down Expand Up @@ -180,7 +181,8 @@ def init_model(args, configs):
if hasattr(args, 'only_optimize_lora') and args.only_optimize_lora:
mark_only_lora_as_trainable(model, bias='lora_only')

print(configs)
if int(os.environ.get('RANK', 0)) == 0:
print(configs)

# Tie emb.weight to decoder.output_layer.weight
if model.decoder.tie_word_embedding:
Expand Down
Loading