-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,997 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import math | ||
|
||
import torch | ||
from torch.nn import functional as F | ||
|
||
|
||
def init_weights(m, mean=0.0, std=0.01): | ||
classname = m.__class__.__name__ | ||
if classname.find("Conv") != -1: | ||
m.weight.data.normal_(mean, std) | ||
|
||
|
||
def get_padding(kernel_size, dilation=1): | ||
return int((kernel_size * dilation - dilation) / 2) | ||
|
||
|
||
def convert_pad_shape(pad_shape): | ||
pad_shape = [item for sublist in reversed(pad_shape) for item in sublist] | ||
return pad_shape | ||
|
||
|
||
def kl_divergence(m_p, logs_p, m_q, logs_q): | ||
"""KL(P||Q)""" | ||
kl = (logs_q - logs_p) - 0.5 | ||
kl += (0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q)**2)) * | ||
torch.exp(-2.0 * logs_q)) | ||
return kl | ||
|
||
|
||
def rand_gumbel(shape): | ||
"""Sample from the Gumbel distribution, protect from overflows.""" | ||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 | ||
return -torch.log(-torch.log(uniform_samples)) | ||
|
||
|
||
def rand_gumbel_like(x): | ||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) | ||
return g | ||
|
||
|
||
def slice_segments(x, ids_str, segment_size=4): | ||
ret = torch.zeros_like(x[:, :, :segment_size]) | ||
for i in range(x.size(0)): | ||
idx_str = ids_str[i] | ||
idx_end = idx_str + segment_size | ||
ret[i] = x[i, :, idx_str:idx_end] | ||
return ret | ||
|
||
|
||
def rand_slice_segments(x, x_lengths=None, segment_size=4): | ||
b, d, t = x.size() | ||
if x_lengths is None: | ||
x_lengths = t | ||
ids_str_max = x_lengths - segment_size + 1 | ||
ids_str = (torch.rand([b]).to(device=x.device) * | ||
ids_str_max).to(dtype=torch.long) | ||
ret = slice_segments(x, ids_str, segment_size) | ||
return ret, ids_str | ||
|
||
|
||
def get_timing_signal_1d(length, | ||
channels, | ||
min_timescale=1.0, | ||
max_timescale=1.0e4): | ||
position = torch.arange(length, dtype=torch.float) | ||
num_timescales = channels // 2 | ||
log_timescale_increment = math.log( | ||
float(max_timescale) / float(min_timescale)) / (num_timescales - 1) | ||
inv_timescales = min_timescale * torch.exp( | ||
torch.arange(num_timescales, dtype=torch.float) * | ||
-log_timescale_increment) | ||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) | ||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) | ||
signal = F.pad(signal, [0, 0, 0, channels % 2]) | ||
signal = signal.view(1, channels, length) | ||
return signal | ||
|
||
|
||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): | ||
b, channels, length = x.size() | ||
signal = get_timing_signal_1d(length, channels, min_timescale, | ||
max_timescale) | ||
return x + signal.to(dtype=x.dtype, device=x.device) | ||
|
||
|
||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): | ||
b, channels, length = x.size() | ||
signal = get_timing_signal_1d(length, channels, min_timescale, | ||
max_timescale) | ||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) | ||
|
||
|
||
def subsequent_mask(length): | ||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | ||
return mask | ||
|
||
|
||
@torch.jit.script | ||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | ||
n_channels_int = n_channels[0] | ||
in_act = input_a + input_b | ||
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | ||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | ||
acts = t_act * s_act | ||
return acts | ||
|
||
|
||
def shift_1d(x): | ||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] | ||
return x | ||
|
||
|
||
def sequence_mask(length, max_length=None): | ||
if max_length is None: | ||
max_length = length.max() | ||
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | ||
return x.unsqueeze(0) < length.unsqueeze(1) | ||
|
||
|
||
def generate_path(duration, mask): | ||
""" | ||
duration: [b, 1, t_x] | ||
mask: [b, 1, t_y, t_x] | ||
""" | ||
device = duration.device | ||
|
||
b, _, t_y, t_x = mask.shape | ||
cum_duration = torch.cumsum(duration, -1) | ||
|
||
cum_duration_flat = cum_duration.view(b * t_x) | ||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | ||
path = path.view(b, t_x, t_y) | ||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0] | ||
]))[:, :-1] | ||
path = path.unsqueeze(1).transpose(2, 3) * mask | ||
return path | ||
|
||
|
||
def clip_grad_value_(parameters, clip_value, norm_type=2): | ||
if isinstance(parameters, torch.Tensor): | ||
parameters = [parameters] | ||
parameters = list(filter(lambda p: p.grad is not None, parameters)) | ||
norm_type = float(norm_type) | ||
if clip_value is not None: | ||
clip_value = float(clip_value) | ||
|
||
total_norm = 0 | ||
for p in parameters: | ||
param_norm = p.grad.data.norm(norm_type) | ||
total_norm += param_norm.item()**norm_type | ||
if clip_value is not None: | ||
p.grad.data.clamp_(min=-clip_value, max=clip_value) | ||
total_norm = total_norm**(1.0 / norm_type) | ||
return total_norm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import torch | ||
|
||
|
||
def feature_loss(fmap_r, fmap_g): | ||
loss = 0 | ||
for dr, dg in zip(fmap_r, fmap_g): | ||
for rl, gl in zip(dr, dg): | ||
rl = rl.float().detach() | ||
gl = gl.float() | ||
loss += torch.mean(torch.abs(rl - gl)) | ||
|
||
return loss * 2 | ||
|
||
|
||
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | ||
loss = 0 | ||
r_losses = [] | ||
g_losses = [] | ||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | ||
dr = dr.float() | ||
dg = dg.float() | ||
r_loss = torch.mean((1 - dr)**2) | ||
g_loss = torch.mean(dg**2) | ||
loss += r_loss + g_loss | ||
r_losses.append(r_loss.item()) | ||
g_losses.append(g_loss.item()) | ||
|
||
return loss, r_losses, g_losses | ||
|
||
|
||
def generator_loss(disc_outputs): | ||
loss = 0 | ||
gen_losses = [] | ||
for dg in disc_outputs: | ||
dg = dg.float() | ||
l = torch.mean((1 - dg)**2) | ||
gen_losses.append(l) | ||
loss += l | ||
|
||
return loss, gen_losses | ||
|
||
|
||
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | ||
""" | ||
z_p, logs_q: [b, h, t_t] | ||
m_p, logs_p: [b, h, t_t] | ||
""" | ||
z_p = z_p.float() | ||
logs_q = logs_q.float() | ||
m_p = m_p.float() | ||
logs_p = logs_p.float() | ||
z_mask = z_mask.float() | ||
|
||
kl = logs_p - logs_q - 0.5 | ||
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2.0 * logs_p) | ||
kl = torch.sum(kl * z_mask) | ||
l = kl / torch.sum(z_mask) | ||
return l |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import torch | ||
import torch.nn.functional as F | ||
import torch.utils.data | ||
from librosa.filters import mel as librosa_mel_fn | ||
|
||
MAX_WAV_VALUE = 32768.0 | ||
|
||
|
||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor | ||
""" | ||
return torch.log(torch.clamp(x, min=clip_val) * C) | ||
|
||
|
||
def dynamic_range_decompression_torch(x, C=1): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor used to compress | ||
""" | ||
return torch.exp(x) / C | ||
|
||
|
||
def spectral_normalize_torch(magnitudes): | ||
output = dynamic_range_compression_torch(magnitudes) | ||
return output | ||
|
||
|
||
def spectral_de_normalize_torch(magnitudes): | ||
output = dynamic_range_decompression_torch(magnitudes) | ||
return output | ||
|
||
|
||
mel_basis = {} | ||
hann_window = {} | ||
|
||
|
||
def spectrogram_torch(y, | ||
n_fft, | ||
sampling_rate, | ||
hop_size, | ||
win_size, | ||
center=False): | ||
if torch.min(y) < -1.0: | ||
print("min value is ", torch.min(y)) | ||
if torch.max(y) > 1.0: | ||
print("max value is ", torch.max(y)) | ||
|
||
global hann_window | ||
dtype_device = str(y.dtype) + "_" + str(y.device) | ||
wnsize_dtype_device = str(win_size) + "_" + dtype_device | ||
if wnsize_dtype_device not in hann_window: | ||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | ||
dtype=y.dtype, device=y.device) | ||
|
||
y = F.pad( | ||
y.unsqueeze(1), | ||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | ||
mode="reflect", | ||
) | ||
y = y.squeeze(1) | ||
|
||
spec = torch.stft( | ||
y, | ||
n_fft, | ||
hop_length=hop_size, | ||
win_length=win_size, | ||
window=hann_window[wnsize_dtype_device], | ||
center=center, | ||
pad_mode="reflect", | ||
normalized=False, | ||
onesided=True, | ||
return_complex=True, | ||
) | ||
spec = torch.view_as_real(spec) | ||
|
||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | ||
return spec | ||
|
||
|
||
def spec_to_mel_torch(spec, n_fft, n_mels, sampling_rate): | ||
global mel_basis | ||
dtype_device = str(spec.dtype) + "_" + str(spec.device) | ||
if dtype_device not in mel_basis: | ||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels) | ||
mel_basis[dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, | ||
device=spec.device) | ||
spec = torch.matmul(mel_basis[dtype_device], spec) | ||
spec = spectral_normalize_torch(spec) | ||
return spec | ||
|
||
|
||
def mel_spectrogram_torch(y, | ||
n_fft, | ||
n_mels, | ||
sampling_rate, | ||
hop_size, | ||
win_size, | ||
center=False): | ||
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, | ||
center) | ||
spec = spec_to_mel_torch(spec, n_fft, n_mels, sampling_rate) | ||
|
||
return spec |
Oops, something went wrong.