-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDemo_Related_Algorithms.m
272 lines (249 loc) · 10.6 KB
/
Demo_Related_Algorithms.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
clear, clc
%% Experiment Settings
% add necessary folds
addpath(genpath(pwd));
% load data
database = {'ORL','YALEB','COIL20','COIL40','Umist','MNIST'};
numdatas = length(database);
algorithms = {'SSC', 'LRR', 'LRSC', 'LSR', 'BDR', 'TRR', 'FLSR', 'FTRR', 'GCSC'};
numalgs = length(algorithms);
ProjectionType = 0; % data projection type
NormalizationType = 2; % data normalization type
for dataindex = 2:numdatas % different databases
DataName = database{dataindex};
load(database{dataindex});
X = fea;
L = gnd;
if min(unique(L)) == 0
L = L + 1;
end
nbcluster = max(unique(L));
% projection
switch ProjectionType
case 0
X = X;
case 1
X = DataProjection(X, dim);
end
% normalization
switch NormalizationType
case 0
X = X;
case 1
X = mexNormalize(X);
case 2
if max(max(X)) > 1
X = X./repmat((255)*ones(1,size(X,2)),size(X,1),1);
end
end
for algindex = 1:numalgs
algname = algorithms{algindex};
acc_array1 = 0; nmi_array1 = 0;
switch algname
%% SSC
case 'SSC'
disp('Running algorithm is SSC!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = ssc(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
%% LRR
case 'LRR'
disp('Running algorithm is LRR!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C, ~] = lrr(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
%% LRSC
case 'LRSC'
disp('Running algorithm is LRSC!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = lrsc_noiseless(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
%% LSR
case 'LSR'
disp('Running algorithm is LSR!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = LSR1(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
case 'BDR'
disp('Running algorithm is BDR!')
% parameters
alpha = [0.1,1,10,20,50,80];
beta = [0.001,0.01,0.1,0.5,1,5,10,20,50];
Timecell = cell(length(alpha), length(beta));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
for a=1:length(alpha)
for b=1:length(beta)
[time_used,~,C] = BDR_solver(X, nbcluster, alpha(a), beta(b));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(a, b) = compacc(idx',L)
nmi_array1(a, b) = nmi(L, idx')
Timecell{a,b} = time_used;
end
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
%% TRR
case 'TRR'
disp('Running algorithm is TRR!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
ratio = 7;
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = LSR1(X, lambda(para_index));
for ratioindex=1:1%length(ratio)
[C1] = refinecoefficient(C, ratio);
[idx,~] = clu_ncut(C1,nbcluster);
t_acc_array1(ratioindex) = compacc(idx',L);
t_nmi_array1(ratioindex) = nmi(L, idx');
end
acc_array1(para_index) = max(t_acc_array1)
nmi_array1(para_index) = max(t_nmi_array1)
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
case 'FLSR'
disp('Running algorithm is FLSR!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m2 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = FLSR(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
case 'FTRR'
disp('Running algorithm is FTRR!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m2 == length(L)
X = X';
end
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = FTRR(X, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
case 'GCSC'
disp('Running algorithm is GCSC!')
% parameters
lambda = [1e-3, 1e-2, 1e-1, 1, 5, 10, 20, 50, 80, 100];
Timecell = cell(length(lambda));
[m1, m2] = size(X);
if m1 == length(L)
X = X';
end
neighborsize = 7;
for para_index = 1:length(lambda)
[Timecell{para_index}, C] = GCSC(X, neighborsize, lambda(para_index));
C1 = C;
[idx,~] = clu_ncut(C1,nbcluster);
acc_array1(para_index) = compacc(idx',L)
nmi_array1(para_index) = nmi(L, idx')
end
tdir ="./Results/";
cd(tdir)
filename = DataName + "_" + algname + "_" + num2str(ProjectionType)+ "_"+ num2str(NormalizationType);
save(filename, "acc_array1", "nmi_array1", "Timecell")
cd ..
end
end
end