Skip to content

Latest commit

 

History

History
561 lines (482 loc) · 15.4 KB

GettingStart.md

File metadata and controls

561 lines (482 loc) · 15.4 KB

Quick start

Memory SPTAG Index Build

Usage:
./IndexBuiler [options]
Options:
 -d, --dimension <value>       Dimension of vector, required.
 -v, --vectortype <value>      Input vector data type (e.g. Float, Int8, Int16), required.
 -f, --filetype <value>        Input file type (DEFAULT, TXT, XVEC). Default is DEFAULT.
 -i, --input <value>           Input raw data, required.
 -o, --outputfolder <value>    Output folder, required.
 -a, --algo <value>            Index Algorithm type (e.g. BKT, KDT), required.

 -t, --thread <value>          Thread Number.
 -dl, --delimiter <value>      Vector delimiter.
 -norm, --normalized <value>   Vector is normalized.
 -c, --config <value>          Config file for builder.
 -pq, --quantizer <value>      Quantizer File
 -m, --metaindex <value>       Enable delete vectors through metadata
 Index.<ArgName>=<ArgValue>    Set the algorithm parameter ArgName with value ArgValue.

Memory SPTAG Index Search

Usage:
./IndexSearcher [options]
Options:
-d, --dimension <value>       Dimension of vector.
-v, --vectortype <value>      Input vector data type. Default is float.
-i, --input <value>           Input query data.
-f, --filetype <value>        Input file type (DEFAULT, TXT, XVEC). Default is DEFAULT.
-x, --index <value>           Index folder.

-t, --thread <value>          Thread Number.
--delimiter <value>           Vector delimiter.
-norm, --normalized <value>   Vector is normalized.
-r, --truth <value>           Truth file.
-o, --result <value>          Output result file.
-m, --maxcheck <value>        MaxCheck for index.
-a, --withmeta <value>        Output metadata instead of vector id.
-k, --KNN <value>             K nearest neighbors for search.
-tk, --truthKNN <value>       truth set number.
-df, --data <value>           original data file.
-dft, --dataFileType <value>  original data file type. (TXT, or DEFAULT)
-b, --batchsize <value>       Batch query size.
-g, --gentruth <value>        Generate truth file.
-q, --debugquery <value>      Debug query number.
-adc, --adc <value>           Enable ADC Distance computation
Index.<ArgName>=<ArgValue>    Set the algorithm parameter ArgName with value ArgValue.

SPANN Index Build

Create a configure file buildconfig.ini as follows:

[Base]
ValueType=UInt8
DistCalcMethod=L2
IndexAlgoType=BKT
Dim=128
VectorPath=sift1b/base.1B.u8bin
VectorType=DEFAULT
QueryPath=sift1b/query.public.10K.u8bin
QueryType=DEFAULT
WarmupPath=sift1b/query.public.10K.u8bin
WarmupType=DEFAULT
TruthPath=sift1b/public_query_gt100.bin
TruthType=DEFAULT
IndexDirectory=sift1b
QuantizerFilePath=

[SelectHead]
isExecute=true
TreeNumber=1
BKTKmeansK=32
BKTLeafSize=8
SamplesNumber=1000
SelectThreshold=10
SplitFactor=6
SplitThreshold=25
Ratio=0.12
NumberOfThreads=45

[BuildHead]
isExecute=true
NeighborhoodSize=32
TPTNumber=32
TPTLeafSize=2000
MaxCheck=16324
MaxCheckForRefineGraph=16324
RefineIterations=3
NumberOfThreads=45

[BuildSSDIndex]
isExecute=true
BuildSsdIndex=true
InternalResultNum=64
ReplicaCount=8
PostingPageLimit=3
NumberOfThreads=45
MaxCheck=16324
TmpDir=/tmp/
SearchInternalResultNum=32
SearchPostingPageLimit=3
SearchResult=result.txt
ResultNum=10
MaxDistRatio=8.0

Then run ".\IndexBuilder.exe -c buildconfig.ini -d 128 -v UInt8 -f DEFAULT -i FromFile -o sift1b -a SPANN" to build the index.

Another build and search combined executable is SSDServing.exe which is used in the paper experiments.

For sift1b dataset, use the default configuration below (buildconfig.ini) and run .\SSDServing.exe buildconfig.ini:

[Base]
ValueType=UInt8
DistCalcMethod=L2
IndexAlgoType=BKT
Dim=128
VectorPath=sift1b/base.1B.u8bin
VectorType=DEFAULT
QueryPath==sift1b/query.public.10K.u8bin
QueryType=DEFAULT
WarmupPath==sift1b/query.public.10K.u8bin
WarmupType=DEFAULT
TruthPath==sift1b/public_query_gt100.bin
TruthType=DEFAULT
IndexDirectory=sift1b

[SelectHead]
isExecute=true
TreeNumber=1
BKTKmeansK=32
BKTLeafSize=8
SamplesNumber=1000
SaveBKT=false
SelectThreshold=10
SplitFactor=6
SplitThreshold=25
Ratio=0.12
NumberOfThreads=45
BKTLambdaFactor=1.0

[BuildHead]
isExecute=true
NeighborhoodSize=32
TPTNumber=32
TPTLeafSize=2000
MaxCheck=16324
MaxCheckForRefineGraph=16324
RefineIterations=3
NumberOfThreads=45
BKTLambdaFactor=-1.0

[BuildSSDIndex]
isExecute=true
BuildSsdIndex=true
InternalResultNum=64
ReplicaCount=8
PostingPageLimit=3
NumberOfThreads=45
MaxCheck=16324
TmpDir=/tmp/

[SearchSSDIndex]
isExecute=true
BuildSsdIndex=false
InternalResultNum=96
NumberOfThreads=1
HashTableExponent=4
ResultNum=10
MaxCheck=1024
MaxDistRatio=8.0
SearchPostingPageLimit=3

For sift1m dataset, use the default configuration below (buildconfig.ini) and run .\SSDServing.exe buildconfig.ini:

[Base]
ValueType=Float
DistCalcMethod=L2
IndexAlgoType=BKT
Dim=128
VectorPath=sift1m/sift_base.fvecs
VectorType=XVEC
QueryPath=sift1m/sift_query.fvecs
QueryType=XVEC
WarmupPath=sift1m/sift_query.fvecs
WarmupType=XVEC
TruthPath=sift1m/sift_groundtruth.ivecs
TruthType=XVEC
IndexDirectory=sift1m

[SelectHead]
isExecute=true
TreeNumber=1
BKTKmeansK=32
BKTLeafSize=8
SamplesNumber=1000
SaveBKT=false
SelectThreshold=50
SplitFactor=6
SplitThreshold=100
Ratio=0.16
NumberOfThreads=64
BKTLambdaFactor=-1

[BuildHead]
isExecute=true
NeighborhoodSize=32
TPTNumber=32
TPTLeafSize=2000
MaxCheck=8192
MaxCheckForRefineGraph=8192
RefineIterations=3
NumberOfThreads=64
BKTLambdaFactor=-1

[BuildSSDIndex]
isExecute=true
BuildSsdIndex=true
InternalResultNum=64
ReplicaCount=8
PostingPageLimit=12
NumberOfThreads=64
MaxCheck=8192
TmpDir=/tmp/

[SearchSSDIndex]
isExecute=true
BuildSsdIndex=false
InternalResultNum=32
NumberOfThreads=1
HashTableExponent=4
ResultNum=10
MaxCheck=2048
MaxDistRatio=8.0
SearchPostingPageLimit=12

Quantizer Training and Quantizing Vectors

Use Quantizer.exe to train PQQuantizer and output quantizer & quantized vectors:

Usage:
./Quantizer [options]
Options:
-d, --dimension <value>                 Dimension of vector.
-v, --vectortype <value>                Input vector data type. Default is float.
-f, --filetype <value>                  Input file type (DEFAULT, TXT, XVEC). Default is DEFAULT.
-i, --input <value>                     Input raw data.
-o, --output <value>                    Output quantized vectors.
-om, --outputmeta <value>               Output metadata.
-omi, --outputmetaindex <value>         Output metadata index.

-t, --thread <value>                    Thread Number.
-dl, --delimiter <value>                Vector delimiter.
-norm, --normalized <value>             Vector is normalized.
-oq, --outputquantizer <value>          Output quantizer.
-qt, --quantizer <value>                Quantizer type.
-qd, --quantizeddim <value>             Quantized Dimension.
-ts, --train_samples <value>            Number of samples for training.
-debug, --debug <value>                 Print debug information.
-kml, --lambda <value>                  Kmeans lambda parameter.

Input File Format

DEFAULT (Binary)

Input raw data for index build and input query file for index search (suppose vector dimension is 3):

<4 bytes int representing num_vectors><4 bytes int representing num_dimension>
<num_vectors * num_dimension * sizeof(data type) bytes raw data>

Truth file to calculate recall (suppose K is 2):

< 4 bytes int representing num_queries><4 bytes int representing K>
<num_queries * K * sizeof(int) representing truth neighbor ids>

TXT

Input raw data for index build and input query file for index search (suppose vector dimension is 3):

<metadata1>\t<v11>|<v12>|<v13>|
<metadata2>\t<v21>|<v22>|<v23>|
... 

where each line represents a vector with its metadata and its value separated by a tab space. Each dimension of a vector is separated by | or use --delimiter to define the separator.

Truth file to calculate recall (suppose K is 2):

<t11> <t12>
<t21> <t22>
...

where each line represents the K nearest neighbors of a query separated by a blank space. Each neighbor is given by its vector id.

Meta Files Format

Data for index build to provide the metadata of the vectors. There are two files:

meta.bin

<vector 1 meta><vector 2 meta>...

metaindex.bin

<4 bytes int representing num_vectors><sizeof(uint64_t)*(num_vectors + 1) bytes representing position_array where the meta start and end positions in meta.bin for vector i is position_array[i] and position_array[i+1] respectively> 

Quantizer File Format

Data for using PQ quantizer in index build and index search

<1 byte uint8 representing QuantizerType -- 0: NONE, 1: PQ, 2: OPQ><1 byte uint8 representing ReconstructDataType -- 0: int8, 1: uint8, 2: int16, 3: float><4 bytes int representing num_codebooks><4 bytes int representing entries_per_codebook><4 bytes int representing codebook_dim>
<sizeof(ReconstructType)*num_codebooks*entries_per_codebook*codebook_dim representing codebook entries>[<sizeof(float) * reconstruct_dim * reconstruct_dim representing OPQ rotation matrix, row major order>]

Note that num_codebooks*codebook_dim=full_dim. The current PQ implementation only supports entries_per_codebook <= 256 (i.e. quantizing to byte).

Server

Usage:
./Server [options]
Options: 
  -m, --mode <value>              Service mode, interactive or socket.
  -c, --config <value>            Configure file of the index

Write a server configuration file service.ini as follows:

[Service]
ListenAddr=0.0.0.0
ListenPort=8000
ThreadNumber=8
SocketThreadNumber=8

[QueryConfig]
DefaultMaxResultNumber=6
DefaultSeparator=|

[Index]
List=BKT

[Index_BKT]
IndexFolder=BKT_gist

Client

Usage:
./Client [options]
Options:
-s, --server                       Server address
-p, --port                         Server port
-t,                                Search timeout
-cth,                              Client Thread Number
-sth                               Socket Thread Number

Aggregator

Usage:
./Aggregator

Write Aggregator.ini as follows:

[Service]
ListenAddr=0.0.0.0
ListenPort=8100
ThreadNumber=8
SocketThreadNumber=8

[Servers]
Number=2

[Server_0]
Address=127.0.0.1
Port=8000

[Server_1]
Address=127.0.0.1
Port=8010

Python Support

Singlebox PythonWrapper

import SPTAG
import numpy as np

n = 100
k = 3
r = 3

def testBuild(algo, distmethod, x, out):
   i = SPTAG.AnnIndex(algo, 'Float', x.shape[1])
   i.SetBuildParam("NumberOfThreads", '4', "Index")
   i.SetBuildParam("DistCalcMethod", distmethod, "Index")
   if i.Build(x, x.shape[0], False):
       i.Save(out)

def testBuildWithMetaData(algo, distmethod, x, s, out):
   i = SPTAG.AnnIndex(algo, 'Float', x.shape[1])
   i.SetBuildParam("NumberOfThreads", '4', "Index")
   i.SetBuildParam("DistCalcMethod", distmethod, "Index")
   if i.BuildWithMetaData(x, s, x.shape[0], False, False):
       i.Save(out)

def testSearch(index, q, k):
   j = SPTAG.AnnIndex.Load(index)
   for t in range(q.shape[0]):
       result = j.Search(q[t], k)
       print (result[0]) # ids
       print (result[1]) # distances

def testSearchWithMetaData(index, q, k):
   j = SPTAG.AnnIndex.Load(index)
   j.SetSearchParam("MaxCheck", '1024', "Index")
   for t in range(q.shape[0]):
       result = j.SearchWithMetaData(q[t], k)
       print (result[0]) # ids
       print (result[1]) # distances
       print (result[2]) # metadata

def testAdd(index, x, out, algo, distmethod):
   if index != None:
       i = SPTAG.AnnIndex.Load(index)
   else:
       i = SPTAG.AnnIndex(algo, 'Float', x.shape[1])
   i.SetBuildParam("NumberOfThreads", '4', "Index")
   i.SetBuildParam("DistCalcMethod", distmethod, "Index")
   if i.Add(x, x.shape[0], False):
       i.Save(out)

def testAddWithMetaData(index, x, s, out, algo, distmethod):
   if index != None:
       i = SPTAG.AnnIndex.Load(index)
   else:
       i = SPTAG.AnnIndex(algo, 'Float', x.shape[1])
   i.SetBuildParam("NumberOfThreads", '4', "Index")
   i.SetBuildParam("DistCalcMethod", distmethod, "Index")
   if i.AddWithMetaData(x, s, x.shape[0], False, False):
       i.Save(out)

def testDelete(index, x, out):
   i = SPTAG.AnnIndex.Load(index)
   ret = i.Delete(x, x.shape[0])
   print (ret)
   i.Save(out)
   
def Test(algo, distmethod):
   x = np.ones((n, 10), dtype=np.float32) * np.reshape(np.arange(n, dtype=np.float32), (n, 1))
   q = np.ones((r, 10), dtype=np.float32) * np.reshape(np.arange(r, dtype=np.float32), (r, 1)) * 2
   m = ''
   for i in range(n):
       m += str(i) + '\n'

   m = m.encode()

   print ("Build.............................")
   testBuild(algo, distmethod, x, 'testindices')
   testSearch('testindices', q, k)
   print ("Add.............................")
   testAdd('testindices', x, 'testindices', algo, distmethod)
   testSearch('testindices', q, k)
   print ("Delete.............................")
   testDelete('testindices', q, 'testindices')
   testSearch('testindices', q, k)

   print ("AddWithMetaData.............................")
   testAddWithMetaData(None, x, m, 'testindices', algo, distmethod)
   testSearchWithMetaData('testindices', q, k)
   print ("Delete.............................")
   testDelete('testindices', q, 'testindices')
   testSearchWithMetaData('testindices', q, k)

if __name__ == '__main__':
   Test('BKT', 'L2')
   Test('KDT', 'L2')

Python Client Wrapper, Suppose there is a sever run at 127.0.0.1:8000 serving ten-dimensional vector datasets:

import SPTAGClient
import numpy as np
import time

def testSPTAGClient():
   index = SPTAGClient.AnnClient('127.0.0.1', '8000')
   while not index.IsConnected():
       time.sleep(1)
   index.SetTimeoutMilliseconds(18000)

   q = np.ones((10, 10), dtype=np.float32)
   for t in range(q.shape[0]):
       result = index.Search(q[t], 6, 'Float', False)
       print (result[0])
       print (result[1])

if __name__ == '__main__':
   testSPTAGClient()

C# Support

Singlebox CsharpWrapper

using System;
using System.Text;

public class test
{
   static int dimension = 10;
   static int n = 10;
   static int k = 3;

   static byte[] createFloatArray(int n)
   {
       byte[] data = new byte[n * dimension * sizeof(float)];
       for (int i = 0; i < n; i++)
           for (int j = 0; j < dimension; j++)
               Array.Copy(BitConverter.GetBytes((float)i), 0, data, (i * dimension + j) * sizeof(float), 4);
       return data;
   }

   static byte[] createMetadata(int n)
   {
       StringBuilder sb = new StringBuilder();
       for (int i = 0; i < n; i++)
           sb.Append(i.ToString() + '\n');
       return Encoding.ASCII.GetBytes(sb.ToString());
   }

   static void Main()
   {
       {
           AnnIndex idx = new AnnIndex("BKT", "Float", dimension);
           idx.SetBuildParam("DistCalcMethod", "L2", "Index");
           byte[] data = createFloatArray(n);
           byte[] meta = createMetadata(n);
           idx.BuildWithMetaData(data, meta, n, false, false);
           idx.Save("testcsharp");
       }

       AnnIndex index = AnnIndex.Load("testcsharp");
       BasicResult[] res = index.SearchWithMetaData(createFloatArray(1), k);
       for (int i = 0; i < res.Length; i++)
           Console.WriteLine("result " + i.ToString() + ":" + res[i].Dist.ToString() + "@(" + res[i].VID.ToString() + "," + Encoding.ASCII.GetString(res[i].Meta) + ")"); 
       Console.WriteLine("test finish!");
   }
}