Skip to content

Latest commit

 

History

History
195 lines (155 loc) · 6.3 KB

14-Flink-Table-&-SQL.md

File metadata and controls

195 lines (155 loc) · 6.3 KB

简介

Apache Flink具有两个关系API - 表API和SQL - 用于统一流和批处理。Table API是Scala和Java的语言集成查询API,允许以非常直观的方式组合来自关系运算符的查询,Table API和SQL接口彼此紧密集成,以及Flink的DataStream和DataSet API。您可以轻松地在基于API构建的所有API和库之间切换。例如,您可以使用CEP库从DataStream中提取模式,然后使用Table API分析模式,或者可以在预处理上运行Gelly图算法之前使用SQL查询扫描,过滤和聚合批处理表数据。

Flink SQL的编程模型

创建一个TableEnvironment

TableEnvironment是Table API和SQL集成的核心概念,它主要负责:   1、在内部目录中注册一个Table   2、注册一个外部目录   3、执行SQL查询   4、注册一个用户自定义函数(标量、表及聚合)   5、将DataStream或者DataSet转换成Table   6、持有ExecutionEnvironment或者StreamExecutionEnvironment的引用 一个Table总是会绑定到一个指定的TableEnvironment中,相同的查询不同的TableEnvironment是无法通过join、union合并在一起。 TableEnvironment有一个在内部通过表名组织起来的表目录,Table API或者SQL查询可以访问注册在目录中的表,并通过名称来引用它们。

在目录中注册表

TableEnvironment允许通过各种源来注册一个表:

  1、一个已存在的Table对象,通常是Table API或者SQL查询的结果 Table projTable = tableEnv.scan("X").select(...);

  2、TableSource,可以访问外部数据如文件、数据库或者消息系统 TableSource csvSource = new CsvTableSource("/path/to/file", ...);

  3、DataStream或者DataSet程序中的DataStream或者DataSet //将DataSet转换为Table Table table= tableEnv.fromDataSet(tableset);

注册TableSink

注册TableSink可用于将 Table API或SQL查询的结果发送到外部存储系统,例如数据库,键值存储,消息队列或文件系统(在不同的编码中,例如,CSV,Apache [Parquet] ,Avro,ORC],......):   

TableSink csvSink = new CsvTableSink("/path/to/file", ...); 
  
  2、 String[] fieldNames = {"a", "b", "c"}; 
                TypeInformation[] fieldTypes = {Types.INT, Types.STRING, Types.LONG}; 
                tableEnv.registerTableSink("CsvSinkTable", fieldNames, fieldTypes, csvSink);

实战案例一

基于Flink SQL的WordCount:

public class WordCountSQL {

    public static void main(String[] args) throws Exception{

        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        BatchTableEnvironment tEnv = TableEnvironment.getTableEnvironment(env);

        List list  =  new ArrayList();
        String wordsStr = "Hello Flink Hello TOM";
        String[] words = wordsStr.split("\\W+");
        for(String word : words){
            WC wc = new WC(word, 1);
            list.add(wc);
        }
        DataSet<WC> input = env.fromCollection(list);
        tEnv.registerDataSet("WordCount", input, "word, frequency");
        Table table = tEnv.sqlQuery(
                "SELECT word, SUM(frequency) as frequency FROM WordCount GROUP BY word");
        DataSet<WC> result = tEnv.toDataSet(table, WC.class);
        result.print();
    }//main

    public static class WC {
        public String word;//hello
        public long frequency;//1

        // public constructor to make it a Flink POJO
        public WC() {}

        public WC(String word, long frequency) {
            this.word = word;
            this.frequency = frequency;
        }

        @Override
        public String toString() {
            return "WC " + word + " " + frequency;
        }
    }

}

输出如下:

WC TOM 1
WC Hello 2
WC Flink 1

实战案例二

本例稍微复杂,首先读取一个文件中的内容进行统计,并写入到另外一个文件中:

public class SQLTest {

	public static void main(String[] args) throws Exception{

		ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
		BatchTableEnvironment tableEnv = BatchTableEnvironment.getTableEnvironment(env);
		env.setParallelism(1);

		DataSource<String> input = env.readTextFile("test.txt");
		input.print();
		//转换成dataset
		DataSet<Orders> topInput = input.map(new MapFunction<String, Orders>() {
			@Override
			public Orders map(String s) throws Exception {
				String[] splits = s.split(" ");
				return new Orders(Integer.valueOf(splits[0]), String.valueOf(splits[1]),String.valueOf(splits[2]), Double.valueOf(splits[3]));
			}
		});
		//将DataSet转换为Table
		Table order = tableEnv.fromDataSet(topInput);
		//orders表名
		tableEnv.registerTable("Orders",order);

		Table tapiResult = tableEnv.scan("Orders").select("name");
		tapiResult.printSchema();

		Table sqlQuery = tableEnv.sqlQuery("select name, sum(price) as total from Orders group by name order by total desc");

		//转换回dataset
		DataSet<Result> result = tableEnv.toDataSet(sqlQuery, Result.class);

		//将dataset map成tuple输出
		/*result.map(new MapFunction<Result, Tuple2<String,Double>>() {
			@Override
			public Tuple2<String, Double> map(Result result) throws Exception {
				String name = result.name;
				Double total = result.total;
				return Tuple2.of(name,total);
			}
		}).print();*/


		TableSink sink = new CsvTableSink("SQLTEST.txt", "|");
		//writeToSink

		/*sqlQuery.writeToSink(sink);
		env.execute();*/

		String[] fieldNames = {"name", "total"};
		TypeInformation[] fieldTypes = {Types.STRING, Types.DOUBLE};
		tableEnv.registerTableSink("SQLTEST", fieldNames, fieldTypes, sink);
		sqlQuery.insertInto("SQLTEST");
		env.execute();
	}

	/**
	 * 源数据的映射类
	 */
	public static class Orders {
		/**
		 * 序号,姓名,书名,价格
		 */
		public Integer id;
		public String name;
		public String book;
		public Double price;

		public Orders() {
			super();
		}
		public Orders(Integer id, String name, String book, Double price) {
			this.id = id;
			this.name = name;
			this.book = book;
			this.price = price;
		}
	}
	/**
	 * 统计结果对应的类
	 */
	public static class Result {
		public String name;
		public Double total;

		public Result() {}
	}
	}//

以上所有代码,大家在公众号回复Flink即可下载,可以直接本地运行,方便大家调试