-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
323 lines (291 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import open3d as o3d
import argparse
import random
import numpy as np
import torch
import torch.optim as optim
import sys
from dataset import *
from model import *
from utils import *
import os
import json
import time, datetime
import visdom
from time import time
sys.path.append("./distance/emd/")
import emd_module as emd
sys.path.append("./distance/chamfer/")
import dist_chamfer as cd
parser = argparse.ArgumentParser()
parser.add_argument(
'--batchSize', type=int, default=8, help='input batch size')
parser.add_argument(
'--workers', type=int, help='number of data loading workers', default=12)
parser.add_argument(
'--nepoch', type=int, default=750, help='number of epochs to train for')
parser.add_argument(
'--model', type=str, default='', help='optional reload model path')
parser.add_argument(
'--num_points', type=int, default=8192, help='number of points')
parser.add_argument(
'--n_regions', type=int, default=16, help='number of surface elements')
parser.add_argument(
'--env', type=str, default="SoftPoolNet", help='visdom environment')
parser.add_argument(
'--dataset', type=str, default="shapenet", help='dataset for evaluation')
parser.add_argument(
'--methods',
nargs='+',
default=['softpool', 'msn', 'folding', 'grnet'],
help='a list of methods')
parser.add_argument('--savepath', type=str, default='', help='path for saving')
opt = parser.parse_args()
print(opt)
class FullModel(nn.Module):
def __init__(self, model):
super(FullModel, self).__init__()
self.model = model
self.EMD = emd.emdModule()
self.CD = cd.chamferDist()
def forward(self, parts, gt, part_seg, gt_seg, eps, iters):
output1, output2, output3, output4, output5, output6, output7 = self.model(
parts, part_seg)
loss_points = torch.zeros(1).cuda()
loss_others = torch.zeros(1).cuda()
if output1:
"""
dist1, dist2, _, _ = self.CD(output1[0], gt)
cd1 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
"""
dist, _ = self.EMD(output1[0], gt, eps, iters)
cd1 = torch.sqrt(dist).mean(1)
dist1, dist2, _, _ = self.CD(output1[1], gt)
cd1 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
if self.model.n_regions == 1:
dist1, dist2, _, _ = self.CD(
output1[0][:, output1[0].shape[1] // 2:, :], part)
cd1 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
dist1, dist2, _, _ = self.CD(
output1[1][:, output1[1].shape[1] // 2:, :], part)
cd1 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
"""
dist, _ = self.EMD(output1[1][:, output1[1].shape[1] // 2:, :],
part, eps, iters)
cd1 += torch.sqrt(dist).mean(1)
"""
dist1, dist2, _, _ = self.CD(output1[2], gt)
cd1 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
dist1, dist2, _, _ = self.CD(output1[3], gt)
cd1 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd1 = cd1.mean(0)
loss_points += cd1
loss_others += 0.1 * output1[5]
else:
cd1 = []
if output2:
dist1, dist2, _, _ = self.CD(output2[0], gt)
cd2 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
dist1, dist2, _, _ = self.CD(output2[1], gt)
cd2 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd2 = cd2.mean(0)
loss_points += cd2
loss_others += 0.1 * output2[2]
else:
cd2 = []
if output3:
dist1, dist2, _, _ = self.CD(output3[0], gt)
cd3 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd3 = cd3.mean(0)
loss_points += cd3
else:
cd3 = []
if output4:
from GRNet.extensions.gridding_loss import GriddingLoss
gridding_loss = GriddingLoss(scales=[64, 128], alphas=[0.5, 0.5])
dist1, dist2, _, _ = self.CD(output4[0], gt)
cd4 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
grid_loss = gridding_loss(output4[0], gt)
cd4 += grid_loss
dist1, dist2, idx1, _ = self.CD(output4[1], gt)
cd4 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
SM = torch.nn.Softmax(dim=-1)
sem_feat = SM(output4[3][:, :, :]).float()
labels_gt = torch.gather(gt_seg[:, :, 0], dim=1, index=idx1.long())
sem_gt = torch.nn.functional.one_hot(
labels_gt.to(torch.int64), 12).float()
loss_sem_fine = torch.mean(-torch.sum(
0.97 * sem_gt * torch.log(1e-6 + sem_feat) +
(1 - 0.97) * (1 - sem_gt) * torch.log(1e-6 + 1 - sem_feat),
dim=-1))
cd4 += 0.01 * loss_sem_fine
dist1, dist2, idx1, _ = self.CD(output4[2], gt)
cd4 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
sem_feat = SM(output4[4][:, :, :]).float()
labels_gt = torch.gather(gt_seg[:, :, 0], dim=1, index=idx1.long())
sem_gt = torch.nn.functional.one_hot(
labels_gt.to(torch.int64), 12).float()
loss_sem_coar = torch.mean(-torch.sum(
0.97 * sem_gt * torch.log(1e-6 + sem_feat) +
(1 - 0.97) * (1 - sem_gt) * torch.log(1e-6 + 1 - sem_feat),
dim=-1))
cd4 += 0.01 * loss_sem_coar
cd4 = cd4.mean(0)
loss_points += cd4
else:
cd4 = []
if output5:
"""
dist1, dist2, _, _ = self.CD(output5[0], gt)
cd5 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd5 = cd5.mean(0)
"""
dist, _ = self.EMD(output5[0], gt, eps, iters)
cd5 = torch.sqrt(dist).mean(1)
cd5 = cd5.mean(0)
loss_points += cd5
else:
cd5 = []
if output6:
dist1, dist2, _, _ = self.CD(output6[0], gt)
cd6 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
dist1, dist2, _, _ = self.CD(output6[1], gt)
cd6 += torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd6 = cd6.mean(0)
loss_points += cd6
else:
cd6 = []
if output7:
"""
dist1, dist2, _, _ = self.CD(output7[0], gt)
cd7 = torch.mean(dist1, 1) + torch.mean(dist2, 1)
cd7 = cd7.mean()
"""
dist, _ = self.EMD(output7[0], gt, eps, iters)
cd7 = torch.sqrt(dist).mean(1)
cd7 = cd7.mean(0)
loss_points += cd7
else:
cd7 = []
return output1, output2, output3, output4, output5, output6, output7, cd1, cd2, cd3, cd4, cd5, cd6, cd7, loss_points, loss_others
# vis = visdom.Visdom(port = 8097, env=opt.env) # set your port
now = datetime.datetime.now()
save_path = opt.savepath # now.isoformat()
if not os.path.exists('./log/'):
os.mkdir('./log/')
dir_name = os.path.join('log', save_path)
if not os.path.exists(dir_name):
os.mkdir(dir_name)
logname = os.path.join(dir_name, 'log.txt')
os.system('cp ./train.py %s' % dir_name)
os.system('cp ./dataset.py %s' % dir_name)
os.system('cp ./model.py %s' % dir_name)
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
best_val_loss = 10
dataset = ShapeNet(
train=True, npoints=opt.num_points, dataset_name=opt.dataset)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batchSize,
shuffle=True,
num_workers=int(opt.workers))
dataset_test = ShapeNet(train=False, npoints=opt.num_points)
dataloader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=opt.batchSize,
shuffle=False,
num_workers=int(opt.workers))
len_dataset = len(dataset)
print("Train set size: ", len_dataset)
network = Network(
num_points=opt.num_points,
n_regions=opt.n_regions,
model_lists=opt.methods)
network = torch.nn.DataParallel(FullModel(network))
network.cuda()
# network.module.model.apply(weights_init) #initialization of the weight
if opt.model != '':
network.module.model.load_state_dict(torch.load(opt.model))
print("Previous weight loaded ")
lrate = 1e-4
optimizer = optim.Adam(
network.module.model.parameters(),
lr=lrate,
weight_decay=0,
betas=(.9, .999))
train_loss = AverageValueMeter()
val_loss = AverageValueMeter()
with open(logname, 'a') as f: #open and append
f.write(str(network.module.model) + '\n')
train_curve = []
val_curve = []
labels_generated_points = torch.Tensor(
range(1,
(opt.n_regions + 1) * (opt.num_points // opt.n_regions) + 1)).view(
opt.num_points // opt.n_regions, (opt.n_regions + 1)).transpose(
0, 1)
labels_generated_points = (labels_generated_points) % (opt.n_regions + 1)
labels_generated_points = labels_generated_points.contiguous().view(-1)
for epoch in range(opt.nepoch):
#TRAIN MODE
# train_loss.reset()
network.module.model.train()
# learning rate schedule
if epoch == 20:
optimizer = optim.Adam(
network.module.model.parameters(), lr=lrate / 10.0)
if epoch == 40:
optimizer = optim.Adam(
network.module.model.parameters(), lr=lrate / 100.0)
for i, data in enumerate(dataloader, 0):
optimizer.zero_grad()
id, part, gt, part_seg, gt_seg = data
part = part.float().cuda()
part_seg = part_seg.float().cuda()
gt = gt.float().cuda()
gt_seg = gt_seg.float().cuda()
output1, output2, output3, output4, output5, output6, output7, cd1, cd2, cd3, cd4, cd5, cd6, cd7, loss_points, loss_others = network(
part.transpose(2, 1), gt, part_seg, gt_seg, 0.005, 50)
loss_all = loss_points + loss_others
loss_all.backward()
# train_loss.update(cd4.mean().item())
optimizer.step()
if i % 10 == 0:
idx = random.randint(0, part.size()[0] - 1)
if i % 300 == 0:
print('saving net...')
torch.save(network.module.model.state_dict(),
'%s/network.pth' % (dir_name))
print(
opt.env +
' train [%d: %d/%d] cd1: %.2f cd2: %.2f cd3: %.2f cd4: %.2f cd5: %.2f cd6: %.2f cd6: %.2f'
% (epoch, i, len_dataset / opt.batchSize,
cd1.item() * 1e4 if cd1 else 0, cd2.item() * 1e4 if cd2 else 0,
cd3.item() * 1e4 if cd3 else 0, cd4.item() * 1e4 if cd4 else 0,
cd5.item() * 1e4 if cd5 else 0, cd6.item() * 1e4 if cd6 else 0,
cd7.item() * 1e4 if cd7 else 0))
# train_curve.append(train_loss.avg)
# VALIDATION
if epoch % 200 == 199:
val_loss.reset()
network.module.model.eval()
with torch.no_grad():
for i, data in enumerate(dataloader_test, 0):
id, part, gt, part_seg, gt_seg = data
part = part.float().cuda()
part_seg = part_seg.float().cuda()
gt = gt.float().cuda()
gt_seg = gt_seg.float().cuda()
output1, output2, output3, output4, output5, output6, output7, cd1, cd2, cd3, cd4, cd5, cd6, cd7, _, _ = network(
part.transpose(2, 1), gt, part_seg, gt_seg, 0.004, 3000)
# val_loss.update(cd4.mean().item())
idx = random.randint(0, part.size()[0] - 1)
print(
opt.env +
' val [%d: %d/%d] cd1: %.2f cd2: %.2f cd3: %.2f cd4: %.2f'
% (epoch, i, len_dataset / opt.batchSize,
cd1.item() if cd1 else 0, cd2.item() if cd2 else 0,
cd3.item() if cd3 else 0, cd4.item() if cd4 else 0))