-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpointnet.py
43 lines (38 loc) · 1.3 KB
/
pointnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from math import pi
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
class PointNetFeat(nn.Module):
def __init__(self, num_points=8192, dim_pn=1024):
super(PointNetFeat, self).__init__()
self.dim_pn = dim_pn
self.conv1 = torch.nn.Conv1d(3, 64, 1)
self.conv2 = torch.nn.Conv1d(64, 128, 1)
self.conv3 = torch.nn.Conv1d(128, dim_pn, 1)
self.bn1 = torch.nn.BatchNorm1d(64)
self.bn2 = torch.nn.BatchNorm1d(128)
self.bn3 = torch.nn.BatchNorm1d(dim_pn)
"""
self.fourier_map1 = Periodics(dim_input=3, dim_output=32)
self.fourier_map2 = Periodics(
dim_input=32, dim_output=128, is_first=False)
self.fourier_map3 = Periodics(
dim_input=128, dim_output=128, is_first=False)
"""
self.num_points = num_points
def forward(self, inputs):
"""
x = self.fourier_map1(inputs)
x = self.fourier_map2(x)
x = self.fourier_map3(x)
"""
x = F.relu(self.bn1(self.conv1(inputs)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
x, _ = torch.max(x, 2)
x = x.view(-1, self.dim_pn)
return x