-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mobilenetv2_fpn.py
executable file
·301 lines (246 loc) · 10.9 KB
/
train_mobilenetv2_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#coding=utf-8
from data import *
from utils.augmentations import SSDAugmentation
from layers.modules import MultiBoxLoss
from ssd_mobilenetv2_fpn import build_ssd # train with mobilenet backbone
import os
import sys
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.utils.data as data
import numpy as np
import argparse
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Single Shot MultiBox Detector Training With Pytorch')
train_set = parser.add_mutually_exclusive_group()
parser.add_argument('--dataset', default='VOC', choices=['VOC', 'COCO'],
type=str, help='VOC or COCO')
# parser.add_argument('--dataset_root', default='/media/mario/D6DA8490DA846F15/Datasets/VOCdevkit',
# help='Dataset root directory path')
parser.add_argument('--dataset_root', default='/media/mario/新加卷/DataSets',
help='Dataset root directory path')
parser.add_argument('--basenet', default=None, #'mobilenetv2.pth.tar',
help='Pretrained base model')
parser.add_argument('--batch_size', default=32, type=int,
help='Batch size for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from')
# parser.add_argument('--resume', default='weights_zhongdong/ssd_mobilenetv2_fpn_20200211/mobilenetv2_final.pth', type=str,
# help='Checkpoint state_dict file to resume training from')
parser.add_argument('--start_iter', default=0, type=int,
help='Resume training at this iter')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='Momentum value for optim')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float,
help='Gamma update for SGD')
parser.add_argument('--visdom', default=False, type=str2bool,
help='Use visdom for loss visualization')
parser.add_argument('--save_folder', default='weights_zhongdong/',
help='Directory for saving checkpoint models')
args = parser.parse_args()
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
## train mobilenet backbone
def train():
if args.dataset == 'COCO':
if args.dataset_root == VOC_ROOT:
if not os.path.exists(COCO_ROOT):
parser.error('Must specify dataset_root if specifying dataset')
print("WARNING: Using default COCO dataset_root because " +
"--dataset_root was not specified.")
args.dataset_root = COCO_ROOT
cfg = coco
dataset = COCODetection(root=args.dataset_root,
transform=SSDAugmentation(cfg['min_dim'],
MEANS))
elif args.dataset == 'VOC':
# if args.dataset_root == COCO_ROOT:
# parser.error('Must specify dataset if specifying dataset_root')
cfg = voc
dataset = VOCDetection(root=args.dataset_root,
transform=SSDAugmentation(cfg['min_dim'],
MEANS))
# print('cfg.feature_map:', cfg['feature_maps'])
# print('cfg.aspect_ratios:', cfg['aspect_ratios'])
ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
# else:
# ssd_net.mobilenet = nn.DataParallel(ssd_net.mobilenet)
# mobile_weights = torch.load(args.save_folder + args.basenet, map_location='cuda:0')
# print('Loading base network...')
# ssd_net.mobilenet.load_state_dict(mobile_weights['state_dict'])
# # mobile_weights = torch.load(args.save_folder + args.basenet, map_location='cuda:0')
# # print('Loading base network...')
# # ssd_net.load_state_dict(mobile_weights['state_dict'])
# if isinstance(ssd_net.mobilenet, torch.nn.DataParallel):
# ssd_net.mobilenet = ssd_net.mobilenet.module
# ssd_net.mobilenet.apply(weights_init)
if args.cuda:
net = net.cuda()
if not args.resume:
print('Initializing weights...')
# initialize newly added layers' weights with xavier method
#ssd_net.extra1.apply(weights_init)
ssd_net.extras.apply(weights_init)
ssd_net.loc.apply(weights_init)
ssd_net.conf.apply(weights_init)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
False, args.cuda)
net.train()
# loss counters
loc_loss = 0
conf_loss = 0
epoch = 0
print('Loading the dataset...')
epoch_size = len(dataset) // args.batch_size
print('Training SSD on:', dataset.name)
print('Using the specified args:')
print(args)
step_index = 0
if args.visdom:
vis_title = 'SSD.PyTorch on ' + dataset.name
vis_legend = ['Loc Loss', 'Conf Loss', 'Total Loss']
iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend)
epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend)
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True, drop_last=True)
# create batch iterator
batch_iterator = iter(data_loader)
t0 = time.time()
for iteration in range(args.start_iter, cfg['max_iter']):
if args.visdom and iteration != 0 and (iteration % epoch_size == 0):
epoch += 1
update_vis_plot(epoch, loc_loss, conf_loss, epoch_plot, None,
'append', epoch_size)
# reset epoch loss counters
loc_loss = 0
conf_loss = 0
#epoch += 1
if iteration in cfg['lr_steps']:
step_index += 1
adjust_learning_rate(optimizer, args.gamma, step_index)
# load train data
try:
images, targets = next(batch_iterator)
except StopIteration:
batch_iterator = iter(data_loader)
images, targets = next(batch_iterator)
with torch.no_grad():
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(ann.cuda()) for ann in targets]
else:
images = Variable(images)
targets = [Variable(ann) for ann in targets]
# backprop
optimizer.zero_grad()
# forward
t0 = time.time()
out = net(images)
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
loss.backward()
optimizer.step()
t1 = time.time()
# loc_loss += loss_l.data[0]
# conf_loss += loss_c.data[0]
loc_loss += loss_l.item()
conf_loss += loss_c.item()
# if iteration % 10 == 0:
# #print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ')
# print('[%3d/%d] iter '%(epoch+args.start_iter/epoch_size,int(cfg['max_iter']) / epoch_size) + repr(iteration) + ' || Loss: %.4f ||' % (loss.item()), end=' ')
# print('timer: %.4f sec.' % (time.time() - t0))
# t0 = time.time()
if iteration % 100 == 0:
print('timer: %.4f sec.' % (t1 - t0))
print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.item()), end=' ')
if args.visdom:
# update_vis_plot(iteration, loss_l.data[0], loss_c.data[0],
# iter_plot, epoch_plot, 'append')
update_vis_plot(iteration, loss_l.item(), loss_c.item(),
iter_plot, epoch_plot, 'append')
if iteration != 0 and iteration % 5000 == 0:
# if iteration != 0 and iteration % 2000 == 0:
print('Saving state, iter:', iteration)
torch.save(ssd_net.state_dict(), 'weights_zhongdong/ssd_mobilenetv2_fpn_20200305_addmiss/mobilenetv2_' +
repr(iteration) + '.pth')
torch.save(ssd_net.state_dict(), 'weights_zhongdong/ssd_mobilenetv2_fpn_20200305_addmiss/mobilenetv2_final' + '.pth')
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every
specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
# print('m',m)
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
# m.bias.data.zero_()
def create_vis_plot(_xlabel, _ylabel, _title, _legend):
return viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel=_xlabel,
ylabel=_ylabel,
title=_title,
legend=_legend
)
)
def update_vis_plot(iteration, loc, conf, window1, window2, update_type,
epoch_size=1):
viz.line(
X=torch.ones((1, 3)).cpu() * iteration,
Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu() / epoch_size,
win=window1,
update=update_type
)
# initialize epoch plot on first iteration
if iteration == 0:
viz.line(
X=torch.zeros((1, 3)).cpu(),
Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu(),
win=window2,
update=True
)
if __name__ == '__main__':
train()