-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclsnetwork.py
executable file
·63 lines (56 loc) · 1.85 KB
/
clsnetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#coding:utf-8
import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
from torchstat import stat
class Net(nn.Module):
def __init__(self, is_train=False):
super(Net, self).__init__()
self.is_train = is_train
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True)
)
def conv_dw(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True),
)
self.model = nn.Sequential(
conv_bn( 3, 32, 2),
conv_dw( 32, 64, 1),
conv_dw( 64, 128, 2),
conv_dw(128, 128, 1),
conv_dw(128, 256, 2),
conv_dw(256, 256, 1),
conv_dw(256, 512, 2),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
nn.AvgPool2d(2),
)
self.fc = nn.Linear(512, 2) ## lan classification
# self.fc = nn.Linear(512, 4) ## color classification
def forward(self, x):
x = self.model(x)
# print('x1 size:', x.size())
x = x.view(-1, 512)
# print('x2 size:', x.size())
x = self.fc(x)
# print('x3 size:', x.size())
return x
def predict(self,x):
pred = F.softmax(self.forward(x))
return pred
if __name__ == '__main__':
model = Net(is_train=False)
stat(model,(3, 128, 128))