forked from graphdeeplearning/benchmarking-gnns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gated_gcn_layer.py
executable file
·233 lines (181 loc) · 8.29 KB
/
gated_gcn_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
"""
ResGatedGCN: Residual Gated Graph ConvNets
An Experimental Study of Neural Networks for Variable Graphs (Xavier Bresson and Thomas Laurent, ICLR 2018)
https://arxiv.org/pdf/1711.07553v2.pdf
"""
class GatedGCNLayer(nn.Module):
"""
Param: []
"""
def __init__(self, input_dim, output_dim, dropout, batch_norm, residual=False):
super().__init__()
self.in_channels = input_dim
self.out_channels = output_dim
self.dropout = dropout
self.batch_norm = batch_norm
self.residual = residual
if input_dim != output_dim:
self.residual = False
self.A = nn.Linear(input_dim, output_dim, bias=True)
self.B = nn.Linear(input_dim, output_dim, bias=True)
self.C = nn.Linear(input_dim, output_dim, bias=True)
self.D = nn.Linear(input_dim, output_dim, bias=True)
self.E = nn.Linear(input_dim, output_dim, bias=True)
self.bn_node_h = nn.BatchNorm1d(output_dim)
self.bn_node_e = nn.BatchNorm1d(output_dim)
def message_func(self, edges):
Bh_j = edges.src['Bh']
e_ij = edges.data['Ce'] + edges.src['Dh'] + edges.dst['Eh'] # e_ij = Ce_ij + Dhi + Ehj
edges.data['e'] = e_ij
return {'Bh_j' : Bh_j, 'e_ij' : e_ij}
def reduce_func(self, nodes):
Ah_i = nodes.data['Ah']
Bh_j = nodes.mailbox['Bh_j']
e = nodes.mailbox['e_ij']
sigma_ij = torch.sigmoid(e) # sigma_ij = sigmoid(e_ij)
#h = Ah_i + torch.mean( sigma_ij * Bh_j, dim=1 ) # hi = Ahi + mean_j alpha_ij * Bhj
h = Ah_i + torch.sum( sigma_ij * Bh_j, dim=1 ) / ( torch.sum( sigma_ij, dim=1 ) + 1e-6 ) # hi = Ahi + sum_j eta_ij/sum_j' eta_ij' * Bhj <= dense attention
return {'h' : h}
def forward(self, g, h, e):
h_in = h # for residual connection
e_in = e # for residual connection
g.ndata['h'] = h
g.ndata['Ah'] = self.A(h)
g.ndata['Bh'] = self.B(h)
g.ndata['Dh'] = self.D(h)
g.ndata['Eh'] = self.E(h)
g.edata['e'] = e
g.edata['Ce'] = self.C(e)
g.apply_edges(fn.u_add_v('Dh', 'Eh', 'DEh'))
g.edata['e'] = g.edata['DEh'] + g.edata['Ce']
g.edata['sigma'] = torch.sigmoid(g.edata['e'])
g.update_all(fn.u_mul_e('Bh', 'sigma', 'm'), fn.sum('m', 'sum_sigma_h'))
g.update_all(fn.copy_e('sigma', 'm'), fn.sum('m', 'sum_sigma'))
g.ndata['h'] = g.ndata['Ah'] + g.ndata['sum_sigma_h'] / (g.ndata['sum_sigma'] + 1e-6)
#g.update_all(self.message_func,self.reduce_func)
h = g.ndata['h'] # result of graph convolution
e = g.edata['e'] # result of graph convolution
if self.batch_norm:
h = self.bn_node_h(h) # batch normalization
e = self.bn_node_e(e) # batch normalization
h = F.relu(h) # non-linear activation
e = F.relu(e) # non-linear activation
if self.residual:
h = h_in + h # residual connection
e = e_in + e # residual connection
h = F.dropout(h, self.dropout, training=self.training)
e = F.dropout(e, self.dropout, training=self.training)
return h, e
def __repr__(self):
return '{}(in_channels={}, out_channels={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels)
##############################################################
#
# Additional layers for edge feature/representation analysis
#
##############################################################
class GatedGCNLayerEdgeFeatOnly(nn.Module):
"""
Param: []
"""
def __init__(self, input_dim, output_dim, dropout, batch_norm, residual=False):
super().__init__()
self.in_channels = input_dim
self.out_channels = output_dim
self.dropout = dropout
self.batch_norm = batch_norm
self.residual = residual
if input_dim != output_dim:
self.residual = False
self.A = nn.Linear(input_dim, output_dim, bias=True)
self.B = nn.Linear(input_dim, output_dim, bias=True)
self.D = nn.Linear(input_dim, output_dim, bias=True)
self.E = nn.Linear(input_dim, output_dim, bias=True)
self.bn_node_h = nn.BatchNorm1d(output_dim)
def message_func(self, edges):
Bh_j = edges.src['Bh']
e_ij = edges.src['Dh'] + edges.dst['Eh'] # e_ij = Dhi + Ehj
edges.data['e'] = e_ij
return {'Bh_j' : Bh_j, 'e_ij' : e_ij}
def reduce_func(self, nodes):
Ah_i = nodes.data['Ah']
Bh_j = nodes.mailbox['Bh_j']
e = nodes.mailbox['e_ij']
sigma_ij = torch.sigmoid(e) # sigma_ij = sigmoid(e_ij)
h = Ah_i + torch.sum( sigma_ij * Bh_j, dim=1 ) / ( torch.sum( sigma_ij, dim=1 ) + 1e-6 ) # hi = Ahi + sum_j eta_ij/sum_j' eta_ij' * Bhj <= dense attention
return {'h' : h}
def forward(self, g, h, e):
h_in = h # for residual connection
g.ndata['h'] = h
g.ndata['Ah'] = self.A(h)
g.ndata['Bh'] = self.B(h)
g.ndata['Dh'] = self.D(h)
g.ndata['Eh'] = self.E(h)
#g.update_all(self.message_func,self.reduce_func)
g.apply_edges(fn.u_add_v('Dh', 'Eh', 'e'))
g.edata['sigma'] = torch.sigmoid(g.edata['e'])
g.update_all(fn.u_mul_e('Bh', 'sigma', 'm'), fn.sum('m', 'sum_sigma_h'))
g.update_all(fn.copy_e('sigma', 'm'), fn.sum('m', 'sum_sigma'))
g.ndata['h'] = g.ndata['Ah'] + g.ndata['sum_sigma_h'] / (g.ndata['sum_sigma'] + 1e-6)
h = g.ndata['h'] # result of graph convolution
if self.batch_norm:
h = self.bn_node_h(h) # batch normalization
h = F.relu(h) # non-linear activation
if self.residual:
h = h_in + h # residual connection
h = F.dropout(h, self.dropout, training=self.training)
return h, e
def __repr__(self):
return '{}(in_channels={}, out_channels={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels)
##############################################################
class GatedGCNLayerIsotropic(nn.Module):
"""
Param: []
"""
def __init__(self, input_dim, output_dim, dropout, batch_norm, residual=False):
super().__init__()
self.in_channels = input_dim
self.out_channels = output_dim
self.dropout = dropout
self.batch_norm = batch_norm
self.residual = residual
if input_dim != output_dim:
self.residual = False
self.A = nn.Linear(input_dim, output_dim, bias=True)
self.B = nn.Linear(input_dim, output_dim, bias=True)
self.bn_node_h = nn.BatchNorm1d(output_dim)
def message_func(self, edges):
Bh_j = edges.src['Bh']
return {'Bh_j' : Bh_j}
def reduce_func(self, nodes):
Ah_i = nodes.data['Ah']
Bh_j = nodes.mailbox['Bh_j']
h = Ah_i + torch.sum( Bh_j, dim=1 ) # hi = Ahi + sum_j Bhj
return {'h' : h}
def forward(self, g, h, e):
h_in = h # for residual connection
g.ndata['h'] = h
g.ndata['Ah'] = self.A(h)
g.ndata['Bh'] = self.B(h)
#g.update_all(self.message_func,self.reduce_func)
g.update_all(fn.copy_u('Bh', 'm'), fn.sum('m', 'sum_h'))
g.ndata['h'] = g.ndata['Ah'] + g.ndata['sum_h']
h = g.ndata['h'] # result of graph convolution
if self.batch_norm:
h = self.bn_node_h(h) # batch normalization
h = F.relu(h) # non-linear activation
if self.residual:
h = h_in + h # residual connection
h = F.dropout(h, self.dropout, training=self.training)
return h, e
def __repr__(self):
return '{}(in_channels={}, out_channels={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels)