forked from haonan-li/CMMLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_causal_model.py
76 lines (66 loc) · 3.24 KB
/
hf_causal_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import torch
import numpy as np
import argparse
from mp_utils import choices, format_example, gen_prompt, softmax, run_eval
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
def eval(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):
choice_ids = [tokenizer.convert_tokens_to_ids(choice) for choice in choices]
cors = []
all_conf = []
all_preds = []
answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]):
prompt_end = format_example(test_df, i, subject, include_answer=False)
prompt = gen_prompt(dev_df=dev_df,
subject=subject,
prompt_end=prompt_end,
num_few_shot=num_few_shot,
tokenizer=tokenizer,
max_length=max_length)
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
if "token_type_ids" in inputs: # For Falcon
inputs.pop("token_type_ids")
label = test_df.iloc[i, test_df.shape[1] - 1]
with torch.no_grad():
outputs = model(**inputs)
last_token_logits = outputs.logits[:, -1, :]
choice_logits = last_token_logits[:, choice_ids].detach().cpu().numpy()
conf = softmax(choice_logits[0])[choices.index(label)]
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(choice_logits[0])]
all_preds += pred
all_conf.append(conf)
cors.append(pred == label)
acc = np.mean(cors)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return acc, all_preds, all_conf
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="")
parser.add_argument("--lora_weights", type=str, default="")
parser.add_argument("--data_dir", type=str, default="../data")
parser.add_argument("--save_dir", type=str, default="../results/not_specified")
parser.add_argument("--num_few_shot", type=int, default=0)
parser.add_argument("--max_length", type=int, default=2048)
parser.add_argument("--load_in_8bit", action='store_true')
parser.add_argument("--with_conf", action='store_true')
parser.add_argument("--cot", action='store_true')
args = parser.parse_args()
# TODO: better handle
tokenizer_class = LlamaTokenizer if 'llama' in args.model_name_or_path else AutoTokenizer
model_class = LlamaForCausalLM if 'llama' in args.model_name_or_path else AutoModelForCausalLM
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, trust_remote_code=True)
model = model_class.from_pretrained(args.model_name_or_path,
trust_remote_code=True,
load_in_8bit=args.load_in_8bit,
device_map="auto"
)
if args.lora_weights != "":
model = PeftModel.from_pretrained(
model,
args.lora_weights,
torch_dtype=torch.float16,
)
run_eval(model, tokenizer, eval, args)