forked from yangkang779/MBMD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_generator.py
95 lines (74 loc) · 3.33 KB
/
sample_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
from PIL import Image
from mdnet_utils import *
def gen_samples(generator, bbox, n, overlap_range=None, scale_range=None):
if overlap_range is None and scale_range is None:
return generator(bbox, n)
else:
samples = None
remain = n
factor = 2
while remain > 0 and factor < 16:
samples_ = generator(bbox, remain*factor)
idx = np.ones(len(samples_), dtype=bool)
if overlap_range is not None:
r = overlap_ratio(samples_, bbox)
idx *= (r >= overlap_range[0]) * (r <= overlap_range[1])
if scale_range is not None:
s = np.prod(samples_[:,2:], axis=1) / np.prod(bbox[2:])
idx *= (s >= scale_range[0]) * (s <= scale_range[1])
samples_ = samples_[idx,:]
samples_ = samples_[:min(remain, len(samples_))]
if samples is None:
samples = samples_
else:
samples = np.concatenate([samples, samples_])
remain = n - len(samples)
factor = factor*2
return samples
class SampleGenerator():
def __init__(self, type, img_size, trans_f=1, scale_f=1, aspect_f=None, valid=False):
self.type = type
self.img_size = np.array(img_size) # (w, h)
self.trans_f = trans_f
self.scale_f = scale_f
self.aspect_f = aspect_f
self.valid = valid
def __call__(self, bb, n):
#
# bb: target bbox (min_x,min_y,w,h)
bb = np.array(bb, dtype='float32')
# (center_x, center_y, w, h)
sample = np.array([bb[0]+bb[2]/2, bb[1]+bb[3]/2, bb[2], bb[3]], dtype='float32')
samples = np.tile(sample[None,:],(n,1))
# vary aspect ratio
if self.aspect_f is not None:
ratio = np.random.rand(n,1)*2-1
samples[:,2:] *= self.aspect_f ** np.concatenate([ratio, -ratio],axis=1)
# sample generation
if self.type=='gaussian':
samples[:,:2] += self.trans_f * np.mean(bb[2:]) * np.clip(0.5*np.random.randn(n,2),-1,1)
samples[:,2:] *= self.scale_f ** np.clip(0.5*np.random.randn(n,1),-1,1)
elif self.type=='uniform':
samples[:,:2] += self.trans_f * np.mean(bb[2:]) * (np.random.rand(n,2)*2-1)
samples[:,2:] *= self.scale_f ** (np.random.rand(n,1)*2-1)
elif self.type=='whole':
m = int(2*np.sqrt(n))
xy = np.dstack(np.meshgrid(np.linspace(0,1,m),np.linspace(0,1,m))).reshape(-1,2)
xy = np.random.permutation(xy)[:n]
samples[:,:2] = bb[2:]/2 + xy * (self.img_size-bb[2:]/2-1)
#samples[:,:2] = bb[2:]/2 + np.random.rand(n,2) * (self.img_size-bb[2:]/2-1)
samples[:,2:] *= self.scale_f ** (np.random.rand(n,1)*2-1)
# adjust bbox range
samples[:,2:] = np.clip(samples[:,2:], 10, self.img_size-10)
if self.valid:
samples[:,:2] = np.clip(samples[:,:2], samples[:,2:]/2, self.img_size-samples[:,2:]/2-1)
else:
samples[:,:2] = np.clip(samples[:,:2], 0, self.img_size)
# (min_x, min_y, w, h)
samples[:,:2] -= samples[:,2:]/2
return samples
def set_trans_f(self, trans_f):
self.trans_f = trans_f
def get_trans_f(self):
return self.trans_f