-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathselector_simple.py
93 lines (86 loc) · 4.1 KB
/
selector_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import logging
import torch
from common import sort_index
from selector_def import Selector
class UncertainPredScoreSelector(Selector):
def __init__(self, classifier):
self.classifier = classifier
self.sample_indices = None
return
def select_samples(self, args, X_test, y_test_pred, total_count, \
adaptive = False, \
y_test = None, \
total_wrong = 0, \
max_count = None):
# offset indicates where to start in test samples.
# we will sort prediction scores of all test samples
offset = 0
self.sample_indices = []
if args.classifier not in ['svm', 'gbdt']:
# e.g., 'mlp' and other neural network models:
self.classifier = self.classifier.cuda()
X_test_tensor = torch.from_numpy(X_test).float().cuda()
pred_scores = self.classifier.predict_proba(X_test_tensor)[:, 1].cpu().detach().numpy()
elif args.classifier == 'svm':
pred_scores = self.classifier.predict_proba(X_test)[:, 1]
else:
# 'gbdt':
pred_scores = self.classifier.predict_proba(X_test)
# sort abs(score-0.5) from smallest to largest
sorted_conf = sort_index(pred_scores, offset)
self.sample_scores = {index: 0.5-val for index, val in sorted_conf}
if adaptive == False:
if len(sorted_conf) >= total_count:
self.sample_indices = [x[0] for x in sorted_conf[:total_count]]
else:
self.sample_indices = [x[0] for x in sorted_conf]
else:
sample_cnt = 0
wrong_cnt = 0
for idx, score in sorted_conf:
self.sample_indices.append(idx)
sample_cnt += 1
if y_test_pred[idx] != y_test[idx]:
wrong_cnt += 1
if wrong_cnt == total_wrong or sample_cnt == max_count:
break
logging.info('Added %s uncertain samples...' % (len(self.sample_indices)))
return self.sample_indices, self.sample_scores
def cluster_and_print(self, **kwargs):
return super().cluster_and_print(**kwargs)
class MultiUncertainPredScoreSelector(Selector):
def __init__(self, classifier):
self.classifier = classifier
self.sample_indices = None
return
def select_samples(self, args, X_test, y_test_pred, total_count, \
adaptive = False, \
y_test = None, \
total_wrong = 0, \
max_count = None):
# offset indicates where to start in test samples.
# we will sort prediction scores of all test samples
offset = 0
self.sample_indices = []
if args.classifier not in ['svm', 'gbdt']:
# e.g., 'mlp' and other neural network models:
self.classifier = self.classifier.cuda()
X_test_tensor = torch.from_numpy(X_test).float().cuda()
# shape: (n_samples, n_classes)
pred_scores = self.classifier.predict_proba(X_test_tensor).cpu().detach().numpy()
elif args.classifier == 'svm':
pred_scores = self.classifier.predict_proba(X_test)
else:
# 'gbdt', not implemented yet
raise Exception('Multi-class uncertainty sample selector for GBDT model not implemented yet.')
# get max prediction probability for each sample
pred_scores = pred_scores.max(axis=1)
# uncertainty scores is 1 - max prediction probability
# sort 1 - pred_scores from largest to smallest and get indices
unc_scores = sorted([(1.0 - score, idx) for idx, score in enumerate(pred_scores)], reverse=True)
self.sample_scores = {index: val for val, index in unc_scores[:total_count]}
self.sample_indices = [x[1] for x in unc_scores[:total_count]]
logging.info('Added %s uncertain samples...' % (len(self.sample_indices)))
return self.sample_indices, self.sample_scores
def cluster_and_print(self, **kwargs):
return super().cluster_and_print(**kwargs)